NOTES ON 2005 MEMORANDUM

These notes are necessarily brief and often formal and symbolic.
Many questions could be answered using primitive methods, e.g. "If today is Wednesday, what day of the week will it be 100 days from now?" can be done by counting. That would be laborious, time-consuming and error-prone. The essence of a mathematical approach is to work more smartly by using appropriate representations to model the situation and to exploit the inherent structures and patterns in the situation.

GRADE 4(1)

1. $(64+96) \div 2$
2. $5=\nabla-8$, so $\nabla=13$
3. $1,70 \mathrm{~m}-1,05 \mathrm{~m}=0,65 \mathrm{~m}=65 \mathrm{~cm}$
4. If you look from behind the tower is on your left
5. $08: 00-70 \mathrm{~min} \rightarrow 06: 50$
6. The figure can be divided into 32 equal triangles of which 16 are shaded.
7. If Mary has ∇ stamps, Jason has $2 \times \nabla$ stamps. Together they gave $3 \times \nabla=96$ stamps. So $\nabla=96 \div 3$
8. 6 small ones and 2 big ones for a total of 8
9. $18 \times 10=180$
10. $257+\Delta=438$, so $\Delta=438-257=181 \mathrm{~km}$
11. $438+169=607 \mathrm{~km}$
12. $3+8+3+8=22$
13. Jan, Feb, March: $31+28+31=90$ days, so the $100^{\text {th }}$ day is on 10 April
14. Check answers systematically, e.g. $80=50+20+10 ; 32=20+10+2 ; 62=50+10+2$; etc
15. Bottom level: $3 \times 3=9$ blocks, Second level has 1 less: 8 blocks, Top level has 5 blocks
16. A rings on the hour and half-hour. B rings at $08: 00,08: 35,09: 10,09: 45,10: 20,10: 55$ and 11:30
17. Draw it physically, as shown to the right!
18. Be systematic, e.g. $\quad 32 \quad 23 \quad 43 \quad 13$

34	24	42	12

21.

22. The numbers are one more than a multiple of 4 . Only 6129 is one more than a multiple of 4
23. Let the children be A, B, C, D and E. List all the possibilities, be systematic, note patterns and structure:
A vs B B vs C C vs D D vs E
A vs C B vs D C vs E
A vs D B vs E
A vs E

\mathbf{v}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	X	X	X	X	
\mathbf{B}		X	X	X	
\mathbf{C}			X	X	
\mathbf{D}				X	
\mathbf{E}					

24. $3 ; 6 ; 9 ; 12 ; \ldots=1 \times 3 ; 2 \times 3 ; 3 \times 3 ; 4 \times 3 ; \ldots$ So $53 \times 3=159$
$25.1 ; 4 ; 7 ; 10 ; \ldots=1+0 \times 3 ; 1+1 \times 3 ; 1+2 \times 3 ; 1+3 \times 3 ; \ldots$ So $1+52 \times 3=157$

GRADE 4(F)

1. $5+3=8$, while the others all have a sum of 7
2. Half of 8×8
3. There is a pattern of $+14,+14,+14$ in the numbers
4. $\frac{3}{4} \div \frac{1}{8}=\frac{6}{8} \div \frac{1}{8}$. How many $\frac{1}{8}$ are there in $\frac{6}{8}$?
5. B is a mirror-image in a horizontal or vertical line of symmetry, as shown

6. $35000 \mathrm{~m} \ell \div 35 \mathrm{~m} \ell=100$
7. $6 \times 180 \mathrm{~mm}=1,080 \mathrm{~m}$
8. $1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots$ So $8 \times 8=64$
9. 5 small cubes to a side. So 5×5 in bottom layer, with 5 layers, so $5 \times 5 \times 5$
10. $274-246+1=29$
11. 8 cubes on each of the 6 sides. But then they are all counted twice! So $4 \times 8 \div 2$
12. $2 \times(8+5)+4=30$
13. $x-4+5-6=3$, so $x-5=3$ so $x=8$
14. $2 \times \mathrm{T}+2=38$, so $\mathrm{T}=(38-2) \div 2=18$
15. 120 km in 60 min , so 20 km in 10 min , so 200 km in 100 min , so the time is $11: 40$
$21.7,17,27,37, \ldots 77$ (two!), 87,97 is 11 , plus $70,71,72, \ldots 77,78,79$ is another 9 , so 20
16. $M+M+30=114$, so $2 \times M=84$, so Monde weighs 42 kg
17. $50 \times 2-1=99$
18. Sum of rows $=1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots$ So $50 \times 50=2500$
19. Diameter $=44 \mathrm{~cm}$, so $2200 \mathrm{~cm} \div 44 \mathrm{~cm} /$ turn $=50$ turns

GRADE 5(1)

1. 3 columns, each with 5 blocks: $3 \times 5=15$ blocks

2. The numbers inside the square and the circle are 2 and 3 . 2 is not inside the triangle

3. These are multiples of 7 . Test by division, use your calculator! $4236 \div 7=605,1 \ldots$ so not a multiple. $4224 \div 7=603,4 \ldots \quad 4235 \div 7=605$
4. Try and test each possible answer!
5. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there 64 blocks
6. All the blocks of the bottom layer (32) and all the blocks round the side of the top layer (20)
7. If C children like chocolate, then $4+2 \times C=40$, so $C=(40-4) \div 2=18$
8. $274-246+1=29$. Think of easier cases: if you start on page 1 and read to page 3 , How many pages?

9 . $6,8 \div 2=3,4 ; \quad 3,4 \div 2=1,7 ; \quad 1,7 \div 2=0,85$
10. The number must start and end with 1 so list them systematically:
$\begin{array}{llllllllll}101 & 111 & 121 & 131 & 141 & 151 & 161 & 171 & 181 & 191\end{array}$
11. $100 \div 12=8$ rem 4 , i.e. 8 years bringing us to Sept., plus 4 more months, i.e. Oct, Nov, Dec, Jan

Or if September $=9$, then 100 months further is $9+100=109$. But
January $=1,13,25, \ldots \quad$ these leave a remainder of 1 if divided by 12
February $=2,14,26, \ldots$ these leave a remainder of 2 if divided by 12
March $=3,15,27, \ldots \quad$ these leave a remainder of 3 if divided by 12, etc.
So $109 \div 12=9$ rem 1 , so January
12. $100 \div 7=14$ rem 2 , i.e. 14 full weeks bringing us to Wednesday, plus 2 more days, i.e. Friday Or if Monday $=1$, Wednesday $=3$, so $3+100=103,103 \div 7=14$ rem 5, and 5 is Friday
13. $100 \div 24=4$ rem 4 , i.e. 4 full days bringing us to $10: 00$, plus 4 more hours, i.e. $11,12,13,14: 00$ Or $10+100=110,110 \div 24=6$ rem 14
14. 12 chocolates weigh $1,1 \mathrm{~kg}-680 \mathrm{~g}=420 \mathrm{~g}$, so 1 chocolate weighs $420 \mathrm{~g} \div 12=35 \mathrm{~g}$ so 30 chocolates weigh $30 \times 35 \mathrm{~g}=1050 \mathrm{~g}$, so box weighs $1100 \mathrm{~g}-1050 \mathrm{~g}=50 \mathrm{~g}$
15. 3 for $5=$? for 90 . You can build it up, e.g. 30 for 50 and 24 for 40 , so 54 for 90 . Or 3×18 for 5×18 (90)
16. Put the information in a sketch, fill in the details bit by bit, and extend the information. e.g.: The distance from A to E is 20 cm The distance from B to E is 10 cm You can deduce that $\mathrm{AB}=10 \mathrm{~cm}$!

17. The computer rule is Output number = Input number $\times 5+2$. So if Input is 20 , Output $=20 \times 5+2$
18. $99 \mathrm{~m}=\frac{9}{10}$ of roll, so $11 \mathrm{~m}=\frac{1}{10}$ of roll. Therefore $\frac{10}{10}$ of roll $=10 \times \frac{1}{10}$ of roll $=10 \times 11 \mathrm{~m}=110 \mathrm{~m}$
19. Imagine yourself looking at the card from behind. Or tear the corner from a piece of paper, turn it around!
20. If Joe's starting number is S, then he did $S \times 10=9000$. So $S=900$. So correct answer is $900 \div 10=90$
21. $1 \Delta=6$ and $1 \Delta+1 \odot=10$. So $6+1 \odot=10$, so $1 \odot=4$ and $2 \odot=8$
22. $3 \times 2+2=8 ; 7 \times 2+2=16$; so for rectangle with length $20: 20 \times 2+2=42$
23. List them systematically: 997; 988; 979 898; 889799
24. Make an appropriate representation, e.g. take the special case of 4 teams A, B, C and D and make a systematic list or drawing as shown here. 4 teams play $2 \times(3+2+1)$ games or $4 \times 4-4$ or 4×3 games So 22 teams play $2 \times(21+20+\ldots+1)$ or $22 \times 22-22$ games or 22×21 games

$\mathbf{v s}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	X	X	X	
\mathbf{B}	X	X	X	
\mathbf{C}	X	X	X	
\mathbf{D}	X	X	X	

25. $1+2+3+4+5+6+\ldots+47+48+49+50$
$=51+51+51+\ldots 25$ times
$=25 \times 51$
$=1275$

GRADE 5(F)

1. There are 5 tiles in every metre because $1000 \mathrm{~cm} \div 200 \mathrm{~cm}=5$. So $15 \times 10=150$ tiles
2. Do not count the poles on the corners twice! $4 \times 10-4=36$
3. $\mathrm{C}-\mathrm{a}$ rotation to the right through 90°
4. 4 reds -10 greens -3 purples. So $12(3 \times 4)$ reds $-9(3 \times 3)$ purples
5. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $7^{\text {th }}$ row has 13 dots
6. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $70^{\text {th }}$ row has $2 \times 70-1=139$ dots
7. Total in rows is $1,4,9,16, \ldots=1 \times 1,2 \times 2,3 \times 3,4 \times 4, \ldots$ So in 70 rows there are 70×70 dots
8. Height $=12 \mathrm{~cm}+1,5 \mathrm{~cm} /$ day \times days. So Height after 30 days $=12+1,5 \times 30=57 \mathrm{~cm}$
9. $(150 \mathrm{~cm}-12 \mathrm{~cm}) \div 1,5 \mathrm{~cm} /$ day $=92$ days
10. One more than a multiple of 6 , so it is odd, so it cannot be A or B. Test the others: $4182 \div 6=697$
11. If a sack weighs $S \mathrm{~kg}$, then $3 S=S+30$, so $2 S=30$, so $S=15$. So $3 S=45 \mathrm{~kg}$
12. $3,6,9, \ldots$ is the 3 -times table. So $50 \times 3=150$
13. Mathematics is $\frac{1}{4}$ of his time, and this is 2 hours. So $\frac{4}{4}$ of his time is 4×2 hours $=8$ hours
14. 8 milktarts $=6+2$ milktarts $=6+\frac{1}{3}$ of 6 . So she need $8+\frac{1}{3}$ of 8 cups $=10 \frac{2}{3}$ cups of milk
15. 15 eggs $=9+6$ eggs $=9+\frac{2}{3}$ of 9 eggs. So she can bake $6+\frac{2}{3}$ of 6 tarts $=6+4$ milktarts
16. Through systematic elimination, e.g.

A in the top row must be 1,8 or 6 . But A in the right column cannot be 8 or 1 , so A is 6
B in the bottom row must be 9,4 or 2 . But A in the right column cannot be 9 or 4 , so B is 2
C in the top row must be 1 or 8 . But C in the left column cannot be 1 , so C is 8 . So E is 1

D in the bottom row must be 9 or 4 . But D in the left column cannot be 4 , so D is 9 . So F is 4
We only have 3,5 and 7 left. But G cannot be 3 or 7 , so $\mathrm{G}=5$. H cannot be 3 , so $\mathrm{H}=7$ and $\mathrm{X}=3$
18.

19. 75 c more per week, so $12 \times 75 \mathrm{c}=\mathrm{R} 9$
20. Half the water weighs $21 \mathrm{~kg}-12 \mathrm{~kg}=9 \mathrm{~kg}$, so all the water weighs 18 kg . So the bucket weighs 3 kg
21. The 7 cookies that was left was one less than the children, so there were 8 children who each got 7 , i.e. $8 \times 7=56$ cookies, minus the one that was short, so 55 cookies
22. Share 30 litres in ratio 5 to 1, i.e. 25 to 5
23. If Penny has p coins and Alex has a coins:
$p=2 \times a, p-4=a+4$, so $2 \times a-4=a+4$, so $a=8$, so $p=16$, so $p+a=24$
24. 4000

3100, 3010, 3001
2200, 2020, 2002
2110, 2101, 2011
2020, 2002. 2014
1300, 1030, 1003
1210, 1201
1120, 1102
1111
1030, 1003
1021, 1012
25. If a small pizza costs s rands and a large pizza costs L rands:
$2 s+1 L=5 s$, so $1 L=3 s$, so the cost is $L=3 \times \mathrm{R} 11,50=\mathrm{R} 34,50$

GRADE 6(1)

1. $8-7,93=0,07$ is smaller than $8,08-8=0,08$
2. $302400 \div 6=50400,50400 \div 7=7200,7200 \div \mathbf{8}=900,900 \div \mathbf{9}=100,100 \div \mathbf{1 0}=10$
3. $\frac{13}{20}$ is more than $\frac{12}{20}\left(\frac{3}{5}\right)$ and less than $\frac{16}{20}\left(\frac{4}{5}\right)$, so he is on side DE
4. He still has $\frac{7}{20}$ of the distance to go, so $\frac{7}{20}$ of $25 \mathrm{~cm}=(25 \mathrm{~cm} \div 20) \times 7=8,75 \mathrm{~cm}$
5. From the ground, over the length, to the ground again is $6 \mathrm{~m}+8 \mathrm{~m}+6 \mathrm{~m}=20 \mathrm{~m}$, and from the ground, over the width, to the ground again is $6 \mathrm{~m}+10 \mathrm{~m}+6 \mathrm{~m}=22 \mathrm{~m}$
6. Use trial and error, i.e. try each of the given answers one by one
7. Use trial-and-improvement. Or $54 \div 3=17.17+18+19=54$, so $17 \times 18 \times 19=5814$
8. $\frac{8}{11}-\frac{5}{8}=\frac{9}{88}$ of $\operatorname{tank}=135 \ell$, so $\frac{1}{88}$ of tank $=135 \ell \div 9=15 \ell$, so $\frac{88}{88}$ of tank $=$ $15 \ell \times 88=1320 \ell$
9. 4 books $=2$ books +6 kg , so 2 books $=6 \mathrm{~kg}$, so 1 book $=3 \mathrm{~kg}$
10. Imagine or draw the cube! If the side is 3 times as long, the big cube contains
 27 of the small cubes. So its mass is 27 times as large!
11. There is a general structure here: The denominators are twice the numerator +1 , i.e. $\frac{n}{2 \times n+1}$ We can therefore investigate a general pattern $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \frac{6}{13}, \frac{7}{15}, \ldots$
Check with your calculator: $\frac{1}{3}=0,333 \ldots, \frac{2}{5}=0,4, \ldots$ So $\frac{1}{3}<\frac{2}{5}<\frac{3}{7}<\frac{4}{9}<\frac{5}{11}<\frac{6}{13}<\frac{7}{15}<\ldots$ Conclusion: the larger the denominator, the larger this kind of fraction, so $\frac{11}{23}$ is the largest
12. The 6 small triangles (6), the one big one (7) and these:

13. Make a sketch, e.g. the one shown here $41-30=11$ children like only Comedy $35-30=5$ children like only Action $50-(11+30+5)=4$ children don't like either

14. James is now $2 \times 5=10$ years old, so 15 years from now he will be $10+15=25$ years old
15. Make a systematic list, e.g. $3579 ; 3597|3759 ; 3795| 3957 ; 3975|9375 ; 9357| 9537 \ldots$
16.

2	3
3	5
4	?
5	12
6	17

18. Start at \bullet and end at o:

19. If the empty glass has a mass of g gram and the milk has a mass of m gram, then
$g+m=370$
$g+\frac{1}{2} m=290$
So $\frac{1}{2} m=370-290=80$ gram, so $m=160$ gram and $g=370-160=210$ gram
20. $\frac{2005+2004}{2005-2004}=4009$
21. $(2000-1999)+(1998-1997)+\ldots+(4-3)+(2-1)=1+1+1+1+\ldots+1(1000$ times $)$
22. Let c be the cost of a coke and d the cost of a packet of chips. The cost of the first buy is $6 c+7 d$ and of the second is $8 c+4 d$. So $6 c+7 d=8 c+4 d$. This means you bought 2 Cokes more, but 3 chips less, so 2 cokes cost just as much as 3 chips. So 8 cokes cost just as much as 12 packets of chips. So 8 cokes and 4 packets of chips cost just as much as 16 packets of chips
23. There are 5 possible first digits $(1,3,5,7,9)$ and 5 possible second digits, so in total $5 \times 5=25$ 24. $\mathrm{P}_{n}=4 \times n+1$, so $\mathrm{P}_{20}=4 \times 20+1$
24. Let the length of a tile be $x \mathrm{~cm}$ and the width $y \mathrm{~cm}$. The perimeter of the floor is $8 x+8 y=800 \mathrm{~cm}$. So the perimeter of one tile is $2 x+2 y=200 \mathrm{~cm}$

GRADE 6(F)

1. Make equal parts. Each small square is half of the next bigger square. So half of half of the big square is a quarter of the big square
2. There are 8 columns, each with $2+4+6$ cubes. So $8 \times 12=96$ cubes

3. In middle row the missing number is $18-(11+6)=1$, so in right column $\mathrm{A}=18-(1+10)=7$
4. $\frac{1}{7}=\frac{5}{35}$ and $\frac{1}{5}=\frac{7}{35}$ so $\frac{6}{35}$ is exactly in between them. Or $\left(\frac{1}{5}+\frac{1}{7}\right) \div 2=\left(\frac{7}{35}+\frac{5}{35}\right) \div 2=\frac{6}{35}$
5. List them systematically and you will find $3 \times 2 \times 3=18$ different combos
6. Continue the patterns: $17,22,27,32,37,42,47,52, \ldots$ and $17,24,31,38,45,52, \ldots$
7. For n dice, the number of visible faces is $n \times 3+2$. So for 75 dice, $75 \times 3+2=27$
8. $(359-2) \div 3=119$
9. $0 \times 20+3 \times 10+1 \times 5$
$1 \times 20+1 \times 10+1 \times 5$
10. $102 \div 7=14 \mathrm{rem} 4$, so adding 3 , we have $105 \div 7=15$
11. | B | C | M | In the middle row, N cannot be 2 , so N is 1 or 3 |
| :--- | :--- | :--- | :--- |
| A | 2 | N | l |

A 22 N Suppose $\mathrm{N}=3$. Then $\mathrm{A}=1$ which is impossible (already a 1 in left column).

1	D	So $N=1, A=3$. In left column $B=2$. Then $C=1(D \neq 1)$, so $M=3$, so $M+N=41420$

15. $3 \times(1+2+3)=18$
16. Vary the possibilities systematically. First note that she could not draw 1,3 or 5 games, otherwise her total would be a fraction. If she drew 6 games her total was $6 \times \frac{1}{2}=3$. If she drew 4 and won 2 her total was $2 \times 1+4 \times \frac{1}{2}=4$. If she drew 2 and won 4 her total was $4 \times 1+2 \times \frac{1}{2}=5$
17. Vary the numbers systematically and note the behaviour of the product of the numbers:
$1+17=18$ and $1 \times 17=17$
$6+12=18$ and $6 \times 12=72$
$2+16=18$ and $2 \times 16=32$
$7+11=18$ and $7 \times 11=77$
$3+15=18$ and $3 \times 15=45$
$8+10=18$ and $8 \times 10=80$
$4+14=18$ and $4 \times 14=56$
$9+9=18$ and $9 \times 9=81$
$5+13=18$ and $5 \times 13=65$
$10+8=18$ and $10 \times 8=80$
18.? $=000 \Delta \Delta \Delta \Delta=0 \Delta \Delta \Delta+\frac{1}{2}(0000 \Delta \Delta)=6 \square+4 \square$ from first two balances
18. 331 and 322 (the sum of any two sides must be greater than the third side - why?)
19. If the numbers are x and $y: 6 \times x+y=17$. So $17-y$ must be a multiple of 6 , i.e. 12 , so $y=5$
20. In each case the remainder is 2 less than the divisor. So if we add 2 to the number, it is divisible by 3,4 , 5 and $9.3 \times 3 \times 4 \times 5=180$ is the smallest number divisible by $3,4,5$, and 9 . So my number is 178
21. The number on the front die is $2(5+2=7)$.

The number on back die cannot be $6,1,2$ or 5 . So it can be 3 or 4 . So the sum is $2+3$ or $2+4$

23. Each number is the sum of the two numbers above it, e.g. $6=1+5,15=5+10$
24. If a bubble gum cost B cents and a chocolate costs C cents:
$B+C=90$ and $10 B+5 C=470$, so $5 B+5(B+C)=470$, so $5 B+5 \times 90=470$, so $B=4$, so $C=\mathrm{R} 0,86$
25. $1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots 20 \times 20$

GRADE 7(1)

1. Looking right from the top: 5 faces. Right from the bottom: 5 faces. Right from the front: 4 faces. Right from the back: 4 faces. From the right: 4 faces. From the left: 4 faces. So $4+4+4+4+5+5$
2. If the price without VAT is $\mathrm{R} x$, then $1,14 \times x=36,15$. So $x=31,71$
3. Average $=$ Total mass \div number of children $=(3 \times 75+6 \times 66) \mathrm{kg} \div 9=69 \mathrm{~kg}$
4. The "vertical" formula is $2 \times a+2$. Find a so that $2 \times a+2=64$

Or the "horizontal" formula is $4+2 \times(a-1)$, so find a so that $4+2 \times(a-1)=64$
5. Final price $=120 \%$ of $(110 \%$ of Price $)=1,2 \times 1,1$ of Price $=1,32$ of Price which is a 32% increase
6. $p+q+p+q=p+p+q+q=2 \times p+2 \times q=(p+q) \times 2 \neq p \times q+p \times q$
7. Let the width of the room be w meters. Then Area $=4 \times w \times w=100$, so $4 \times w^{2}=100$, so $w^{2}=25$, so $w=5$ Perimeter $=4 w+w+4 w+w=10 w=50 m$
8. $\frac{n}{6,34}=\frac{a}{1}$. Divide both sides by 100 , then $\frac{n}{634}=\frac{a}{100}$
9. The number is a multiple of 7 . So check which of $7,14,21,28,35,42,49,56, \ldots$ leave a remainder of 1 when divided by 3 and 5
Quicker: the first two conditions means that the number is one more than a multiple of $3 \times 5=15$
So the possible numbers are $16,31,46,61,76,91$. Of these, only 91 is also a multiple of 7
10. 3 large squares

8 small

11. $x_{1}+x_{2}+\ldots+x_{7}=7 \times 49$

So $\left(x_{1}+1\right)+\left(x_{2}+2\right)+\ldots+\left(x_{7}+7\right)=\left(x_{1}+x_{2}+\ldots+x_{7}\right)+(1+2+\ldots+7)=7 \times 49+4 \times 7$
The new average $=(7 \times 49+4 \times 7) \div 7=49+4$
12. The smallest is $10 \times 10=100$. The largest, by guess-and-improvement $=31 \times 31=961$. Count them!
13. Divide square into 4 equal parts. So $\frac{1}{4}$ of $144=36$

14. Divide square into 8 equal parts.
So $\frac{1}{2}$ of $144=72$

15. Dissect into rectangles. $4 \times 16+16=80$

16. If 60% die, then after the first year there are 40% left

After two years 40% of 40% survive, that is 0,4 of $40 \%=16 \%$ survive
After three years 40% of 16% survive, that is 0,4 of $16 \%=6,4 \%$ survive
17. Make an appropriate representation, e.g. take the easier special case of 4 teams,
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , as shown here.
4 teams play a total of $3+2+1$ games -note the structure!
So 12 teams play a total of $11+10+9+\ldots+3+2+1$ games
Do you have a short method to find the answer?

\mathbf{v}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	X	X	X	
\mathbf{B}			X	X
\mathbf{C}				X
\mathbf{D}				

18. For 1 step: 5 matches, for 2 steps: $8+3$ matches, for 3 steps: $8+3+3$ matches

Pattern: $3 \times$ (no. of steps) +2
19. If April had x eggs, Peter had $x+2$, Melanie had $x+7$, Jack had $x+1$

Together: $x+(x+2)+(x+7)+(x+1)=38$, so $4 \times x+10=38$, so $x=7$
20. If he bought x apples and y oranges, then the cost is $2 \times x+1 \times y=52$ and the total fruit is $x+y=32$ $2 \times x+y=52$ can be written as $x+x+y=52$, so $x+(x+y)=52$, so $x+32=52$, so $x=20$
21. $\frac{5^{14}}{5^{17}}=\frac{5 \times 5 \times 5 \times 5 \ldots 14 \mathrm{times}}{5 \times 5 \times 5 \times 5 \ldots 17 \mathrm{times}}=\frac{1}{5^{3}}=\frac{1}{125}$
22. List the units digits of the first few powers:

Exponent	1	2	3	4	5	6	7	8	9
Units digit	3	9	7	1	3	9	7	1	3

The last digits has a recurring pattern $3,9,7,1$
Reorganise the results like this and analyse the sequences:

Units digit	Exponents giving the units digit	
3	$1,5,9,13, \ldots$	These have a remainder of 1 when divided by 4
9	$2,6,10,14, \ldots$	These have a remainder of 2 when divided by 4
7	$3,7,11,15, \ldots$	These have a remainder of 3 when divided by 4
1	$4,8,12,16, \ldots$	These are multiples of 4

We simply have to decide in which sequence 2005 will be ...
23. Look for structure in the denominator:

	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$	$\mathbf{F}_{\mathbf{3}}$	$\mathbf{F}_{\mathbf{4}}$	\cdots	$\mathbf{F}_{\mathbf{1 0}}$
Numbers	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{20}$		$?$
Structure	$\frac{1}{1 \times 2}$	$\frac{1}{2 \times 3}$	$\frac{1}{3 \times 4}$	$\frac{1}{4 \times 5}$		$\frac{1}{10 \times 11}$

24. Calculate intermediate answers and look for structure and patterns:

Sum of $\mathbf{1}$ fraction $\quad=\frac{1}{2}$
Sum of 2 fractions $=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$
Sum of 3 fractions $=\frac{2}{3}+\frac{1}{12}=\frac{3}{4}$
Sum of 4 fractions $=\frac{3}{4}+\frac{1}{20}=\frac{4}{5}$
Sum of 10 fractions $\quad=\frac{10}{11}$
25. $(1+1) \times\left(1+\frac{1}{2}\right) \times \ldots \times\left(1+\frac{1}{100}\right)=\frac{2}{1} \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \ldots \times \frac{100}{99} \times \frac{101}{100}$

$$
\begin{aligned}
& =\frac{2 \times 3 \times 4 \times 5 \times \ldots \times 99 \times 100 \times 101}{2 \times 3 \times 4 \times 5 \times \ldots \times 99 \times 100} \\
& =101
\end{aligned}
$$

GRADE 7(F)

2. $3 \times 3-3+3=9-3+3=6+3=9$
3. nth number $=2 \times n-1$, so $83^{\text {rd }}$ number $=2 \times 83-1=165$
4. \& 5 .

5. $1+\frac{1}{1+\frac{2}{3}}=1+\frac{1}{\frac{5}{3}}=1+\frac{3}{5}$
6. We know: $\frac{\text { Sum of numbers }}{11}=8$, so Sum of numbers $=11 \times 8=88$

If the new number is x, then $\frac{88+x}{12}=11$. So $x=12 \times 11-88=44$
8. Add all together: $2 \mathrm{~A}+2 \mathrm{~B}+2 \mathrm{C}=42$, so $\mathrm{A}+\mathrm{B}+\mathrm{C}=21$
9. $\mathrm{B}+\mathrm{A}+\mathrm{C}=21$ and $\mathrm{A}+\mathrm{C}=16$, so $\mathrm{B}+16=21$
10. 12:9. So 3 revolutions will be 36 clicks, which will revolve $B 4$ times
11. \# Triangles $=2 \times$ squares +2 , or $2 \times($ squares +1$)$. So Triangles $(6)=2 \times 6+2=14$
12. Triangles (60) $=2 \times 60+2=122$
13. $2 \times x+2=60$, so $x=29$
14. Make a list, varying the numbers systematically. If the digits are a, b, c and d :
abcd, abdc, acbd, acdb, adbc, adcb and similarly if the first digit is b, c, and d. So $6 \times 4=24$
15. $2 \times(7+8+9)=2 \times 24$
16.

Using a representation like this, Area $\mathrm{D}=\mathrm{b} \times \mathrm{d}$
We know $\mathrm{a} \times \mathrm{c}=12, \mathrm{~b} \times \mathrm{c}=21, \mathrm{a} \times \mathrm{d}=20$
Multiply them all together: $\mathrm{a}^{2} \times \mathrm{c}^{2} \times \mathrm{b} \times \mathrm{d}=12 \times 20 \times 21$
But $\mathrm{a} \times \mathrm{c}=12$, so $\mathrm{a}^{2} \times \mathrm{c}^{2}=144$, so $\mathrm{b} \times \mathrm{d}=12 \times 20 \times 21 \div 144=35$
17. Volume $=$ area of base \times length $=7 \mathrm{~cm}^{2} \times 12 \mathrm{~cm}=84 \mathrm{~cm}^{3}$

Or think of cutting out a rectangular prism:
Volume $=4 \times 4 \times 12-3 \times 3 \times 12=7 \times 12$
18. The first digit can be $2,4,6,8$. The second digit can be $0,2,4,6,8$, which gives $4 \times 5=20$ possible combinations

19. The $6^{\text {th }}$ column is given by $6 \times$ row n.

So the last number in row 80 is $6 \times 80=480$. Then row 81 is $481,482,483, \ldots$
20. Filling: In 1 minute $\frac{1}{12}$ of bath fills

Emptying: In 1 minute $\frac{1}{18}$ of bath empties
Together: In 1 minute $\frac{1}{12}-\frac{1}{18}=\frac{1}{36}$ of batch fills. So the whole bath $\left(\frac{36}{36}\right)$ fills in 36 minutes
21. Fill in numbers in the calendar, and test each statement with the numbers.
22. We know $a+d=c+b$, so $a+b+c+d=a+d+c+b=2 \times(a+d)=52$.

So $a+d=26$, so $a+(a+8)=26$, so $a=9$
24. 3 lines from two corners divide the triangle in 4×4 sections

10 lines from two corners will divide the triangle in 11×11 sections $=121$
25. $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \ldots \times \frac{2003}{2004} \times \frac{2004}{2005}=1 \times \frac{2}{2} \times \frac{3}{3} \times \ldots \times \frac{2004}{2004} \times \frac{1}{2005}=\frac{1}{2005}$

