## NOTES ON 2006 MEMORANDUM FIRST AND FINAL ROUNDS

These notes are necessarily brief and often formal and symbolic.
Many questions could be answered using primitive methods, e.g. "If today is Wednesday, what day of the week will it be 100 days from now? " can be done by counting. That would be laborious, time-consuming and error-prone. The essence of a mathematical approach is to work more smartly by using appropriate representations to model the situation and to exploit the inherent structures and patterns in the situation.

## GRADE 4(1)

1. $5+3=8$, while the others all have a sum of 7
2. Half of $8 \times 8$
3. There is a pattern of $+14,+14,+14$ in the numbers
4. $\frac{3}{4} \div \frac{1}{8}=\frac{6}{8} \div \frac{1}{8}$. How many $\frac{1}{8}$ are there in $\frac{6}{8}$ ?
5. B is a mirror-image in a horizontal or vertical line of symmetry, as shown
6. $35000 \mathrm{~m} \ell \div 35 \mathrm{~m} \ell=100$
7. The figure can be divided into 32 equal triangles of which 16 are shaded.
8. $1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots$ So $8 \times 8=64$
9. 5 small cubes to a side. So $5 \times 5$ in bottom layer, with 5 layers, so $5 \times 5 \times 5$
10. $274-246+1=29$
11. 8 cubes on each of the 6 sides. But then they are all counted twice! So $6 \times 8 \div 2$

12. Bottom level: $3 \times 3=9$ blocks, Second level has 1 less: 8 blocks, Top level has 5 blocks
13. $x-4+5-6=3$, so $x-5=3$ so $x=8$
14. $2 \times \mathrm{T}+2=38$, so $\mathrm{T}=(38-2) \div 2=18$
15. 120 km in 60 min , so 20 km in 10 min , so 200 km in 100 min , so the time is $11: 40$
16. $7,17,27,37, \ldots 77$ (two!), 87,97 is 11 , plus $70,71,72, \ldots 77,78,79$ is another 9 , so 20
17. $M+M+30=114$, so $2 \times M=84$, so Monde weighs 42 kg
18. $50 \times 2-1=99$
19. Sum of rows $=1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots$ So $50 \times 50=2500$
20. $3+8+3+8=22$

## GRADE 4(F)

1. 


2. 2 hours and 55 minutes before $16: 45$ is $13: 50$
3. The watch gains 2 minutes every day ( 24 hours) for 7 days $=2 \mathrm{~min} /$ day $\times 7$ days $=14$ minutes
7. If Zuki has marbles, Zinkle has $\boldsymbol{\bullet}-15$. Together they have $2 \times-15=95$ marbles. So $\boldsymbol{\bullet}=55$
8. $257+\Delta=438$, so $\Delta=438-257=181 \mathrm{~km}$
9. $438+169=607 \mathrm{~km}$
10. 4 is $1 / 3$ of 12 . Thabo needs to pay $1 / 3$ of $\mathrm{R} 30=\mathrm{R} 10$
11.

12. $6,8 \div 2=3,4 ; 3,4 \div 2=1,7 ; 1,7 \div 2=0,85$
13. Bingo : 71; Thandi: $71-24=47$; Voyo: $71+24=95$ $71+47+95=213$ or $71 \times 3=213(24-24=0)$
14. 37 will be opposite 38 , therefore Con lives opposite Luke
15. $\mathrm{R} 35,60 \div 40=89 \mathrm{c}$ so $89 \mathrm{c} \times 15=\mathrm{R} 13,35$
16. $4 \times 3 \rightarrow 12+8 \rightarrow 20 \div 2 \rightarrow 10-6=4$
17. $5=20 \times 1 / 4 ; 20 \div 3=62 / 3$ (She cannot make $2 / 3$ of a skirt $\rightarrow 6$ skirts)
18. $15 \times 2=30 ; 15 \times 1 / 5=15 / 5=3$; so $30+3=33$ viennas
19. 2 people sit at the end $\rightarrow 56 \div 2$ ( 2 people per table) $\rightarrow 28$ tables
20. Draw it physically: $11-5=6 \mathrm{~km}$

21. Arrange them: O S (R) T (R) E (Ram can be between Siva and Temba or between Temba and Eby) Oscar is the shortest
22. $1 / 4=10 / 40 ; 1 / 5=8 / 40 \rightarrow 9 / 40$
24. 2 ways: $2 \times 10 \mathrm{c}+5 \mathrm{c} ; 1 \times 10 \mathrm{c}+1 \times 20 \mathrm{c}+5 \mathrm{c}$
25. $2,3,4,5,6,7,8,9,10,11,12 \rightarrow 11$ answers

## GRADE 5(1)

1. There are 5 tiles in every metre because $1000 \mathrm{~cm} \div 200 \mathrm{~cm}=5$. So $15 \times 10=150$ tiles
2. The numbers inside the square and the circle are 2 and 3.2 is not inside the triangle
3. Try and test each possible answer!
4. $\mathrm{C}-$ a rotation to the right through $90^{\circ}$
5. 4 reds -10 greens -3 purples. So $12(3 \times 4)$ reds $-9(3 \times 3)$ purples
6. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $7^{\text {th }}$ row has 13 dots
7. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $70^{\text {th }}$ row has $2 \times 70-1=139$ dots
8. $100 \div 24=4$ rem 4 , i.e. 4 full days bringing us to $10: 00$, plus 4 more hours, i.e. $11,12,13,14: 00$ Or $10+100=110,110 \div 24=6 \mathrm{rem} 14$
9. Height $=12 \mathrm{~cm}+1,5 \mathrm{~cm} /$ day $\times$ days. So Height after 30 days $=12+1,5 \times 30=57 \mathrm{~cm}$
10. $(150 \mathrm{~cm}-12 \mathrm{~cm}) \div 1,5 \mathrm{~cm} /$ day $=92$ days
11. One more than a multiple of 6 , so it is odd, so it cannot be A or B. Test the others: $4182 \div 6=697$
12. If a sack weighs $S \mathrm{~kg}$, then $3 S=S+30$, so $2 S=30$, so $S=15$. So $3 S=45 \mathrm{~kg}$
13. $3,6,9, \ldots$ is the 3 -times table. So $50 \times 3=150$
14. Mathematics is $\frac{1}{4}$ of his time, and this is 2 hours. So $\frac{4}{4}$ of his time is $4 \times 2$ hours $=8$ hours
15. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there are 64 blocks
16. All the blocks of the bottom layer (32) and all the blocks round the side of the top layer (20)
17. $3 \times 2+2=8 ; 7 \times 2+2=16$; so for rectangle with length $20: 20 \times 2+2=42$
18. 


19. 75 c more per week, so $12 \times 75 \mathrm{c}=\mathrm{R} 9$
20. Half the water weighs $21 \mathrm{~kg}-12 \mathrm{~kg}=9 \mathrm{~kg}$, so all the water weighs 18 kg . So the bucket weighs 3 kg
21. The number must start and end with 1 so list them systematically:
$\begin{array}{llllllllll}101 & 111 & 121 & 131 & 141 & 151 & 161 & 171 & 181 & 191\end{array}$
22. Share 30 litres in ratio 5 to 1 , i.e. 25 to 5
23. If Penny has $p$ coins and Alex has $a$ coins:
$p=2 \times a, p-4=a+4$, so $2 \times a-4=a+4$, so $a=8$, so $p=16$, so $p+a=24$
24. 4000

3100, 3010, 3001
2200, 2020, 2002
2110, 2101, 2011
2020, 2002. 2014
1300, 1030, 1003
1210, 1201
1120, 1102
1111
1030, 1003
1021, 1012
25. If a small pizza costs $s$ rands and a large pizza costs $L$ rands: $2 s+1 L=5 s$, so $1 L=3 s$, so the $\operatorname{cost}$ is $L=3 \times \mathrm{R} 11,50=\mathrm{R} 34,50$

## GRADE 5(F)

1. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there 64 blocks
2. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there 64 blocks
3. Between $09: 47$ and $10: 18,31$ minutes pass. 31 minutes from $12: 30$ is $13: 01$
4. $500 \div 12=41$ rem 8 . The 8 bottles need to be put into another crate. $41+1=41$ crates
5. $360 \div 120=3 ; 270 \div 90=3 ; 22 \times 3=66 \mathrm{~mm}$
6. If the loser had $\Delta$ votes, the winner had $\Delta+1002$ votes. Together $2 \times \Delta+1002=39218$
7. The number has to be divisible by $6: 7356 \div 6=1226$
8. R5 less for you and R5 more for her is R10
9. Chapter six ended on page 245. $274-245=29$ pages
10. 


11. $41 \mathrm{~kg}-725 \mathrm{~g}=40,275 \mathrm{~kg}$
12. 3 h (Peter) +2 h (Paul) $+1 \mathrm{~h}($ David $)=6$ hours
$\mathrm{R} 48 \div 6=8 . \mathrm{R} 8 \times 3=\mathrm{R} 24$
13. $600 \div 10=60$. This is the correction to get the original number
$60 \div 10=6$. This is the correct computation
14. $0 \times 5+2=2$
$1 \times 5+2=7$
$2 \times 5+2=12$ etc
15. $37-2=35.35 \div 5=7$
16. $3 \times 2+2=8$
$7 \times 2+2=10$
$10 \times 2+2=22$
17. $600 \div 6 \times 5=500$
$120 \div 6 \times 5=100$
$300 \div 6 \times 5=250$
18. $9 \times 1=9 ; 90 \times 2=180 ; 1 \times 3=3$
$9+180+3=192$
19. Make a sketch of the situation:
" 2 nd from front, 4 th from back" means there are 5 rows. " 3 rd from left, $5^{\text {th }}$ from right" means there are 7 learners per row. So
7 learners/row $\times 5$ rows $=35$ learners
20. One dark square : 8 light squares $\rightarrow 1 / 9$
21. $6 \times 8 \rightarrow 48+8 \rightarrow 56$
22.

23. $12,13,14 ; 21,23,24 ; 31,32,34 ; 41,42,43.12$ numbers
24. -10 years for each sister: $100-30=70$
25. $1^{\text {st }}$ row + last row $=51 ; 2^{\text {nd }}$ row $+2^{\text {nd }}$ to last row $=51$
$50 \div 2=25 \rightarrow 51 \times 25=1275$

## GRADE 6(1)

1. Make equal parts. Each small square is half of the next bigger square So half of half of the big square is a quarter of the big square
2. There are 8 columns, each with $2+4+6$ cubes. So $8 \times 12=96$ cubes
3. In middle row the missing number is $18-(11+6)=1$, so in right column $\mathrm{A}=18-(1+10)=7$
4. $\frac{1}{7}=\frac{5}{35}$ and $\frac{1}{5}=\frac{7}{35}$ so $\frac{6}{35}$ is exactly in between them. Or $\left(\frac{1}{5}+\frac{1}{7}\right) \div 2=\left(\frac{7}{35}+\frac{5}{35}\right) \div 2=\frac{6}{35}$
5. Use trial and error, i.e. try each of the given answers one by one
6. Continue the patterns: $17,22,27,32,37,42,47,52, \ldots$ and $17,24,31,38,45,52, \ldots$
7. For $n$ dice, the number of visible faces is $n \times 3+2$. So for 75 dice, $75 \times 3+2=27$
8. Imagine or draw the cube! If the side is 3 times as long, the big cube contains 27 of the small cubes. So its mass is 27 times as large!
9. $0 \times 20+3 \times 10+1 \times 5$
$1 \times 20+1 \times 10+1 \times 5$
10. $102 \div 7=14$ remainder 4 , so adding 3 , we have $105 \div 7=15$
11. 

| B | C | M |
| :--- | :--- | :--- |
| A | 2 | N |
| 1 | D |  | In the middle row, N cannot be 2 , so N is 1 or 3

Suppose $\mathrm{N}=3$. Then $\mathrm{A}=1$ which is impossible (already a 1 in left column).
So $N=1, A=3$. In left column $B=2$. Then $C=1(D \neq 1)$, so $M=3$, so $M+N=4$
15. $3 \times(1+2+3)=18$
16. Vary the possibilities systematically. First note that she could not draw 1,3 or 5 games, otherwise her total would be a fraction. If she drew 6 games her total was $6 \times \frac{1}{2}=3$. If she drew 4 and won 2 her total was $2 \times 1+4 \times \frac{1}{2}=4$. If she drew 2 and won 4 her total was $4 \times 1+2 \times \frac{1}{2}=5$
17. Vary the numbers systematically and note the behaviour of the product of the numbers:
$1+17=18$ and $1 \times 17=17 \quad 6+12=18$ and $6 \times 12=72$
$2+16=18$ and $2 \times 16=32 \quad 7+11=18$ and $7 \times 11=77$
$3+15=18$ and $3 \times 15=45 \quad 8+10=18$ and $8 \times 10=80$
$4+14=18$ and $4 \times 14=56 \quad 9+9=18$ and $9 \times 9=81$
$5+13=18$ and $5 \times 13=65 \quad 10+8=18$ and $10 \times 8=80$
18. ? $=000 \Delta \Delta \Delta \Delta=0 \Delta \Delta \Delta+\frac{1}{2}(0000 \Delta \Delta)=6 \square+4 \square$ from first two balances
19. 331 and 322 (the sum of any two sides must be greater than the third side - why?)
20. If the numbers are $x$ and $y: 6 \times x+y=17$. So $17-y$ must be a multiple of 6 , i.e. 12 , so $y=5$

21. In each case the remainder is 2 less than the divisor. So if we add 2 to the number, it is divisible by $3,4,5$ and $9.3 \times 3 \times 4 \times 5$ $=180$ is the smallest number divisible by $3,4,5$, and 9 . So my number is 178
22. If the empty glass has a mass of $g$ gram and the milk has a mass of $m$ gram, then $g+m=370$
$g+\frac{1}{2} m=290$
So $\frac{1}{2} m=370-290=80$ gram, so $m=160$ gram and $g=370-160=210$ gram
23. Each number is the sum of the two numbers above it, e.g. $6=1+5,15=5+10$
24. If a bubble gum cost $B$ cents and a chocolate costs $C$ cents: $B+C=90$ and $10 B+5 C=470$, so $5 B+5(B+C)=470$, so $5 B+5 \times 90=470$, so $B=4$, so $C=\mathrm{R} 0,86$
25. $1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots 20 \times 20$

## GRADE 6(F)

1. $1^{\text {st }}$ number $+\left(1^{\text {st }}\right.$ number +2$)+\left(1^{\text {st }}\right.$ number +4$)=174$
$(174-6) \div 3=1^{\text {st }}$ number $=56$
Biggest number $=56+6=62$
2. $3 \times 3-3+3=9$
3. Full lorry $=4653 \mathrm{~kg}$; empty lorry $=2583 \mathrm{~kg} ; 4653-2583=2070$
$2070 \div 90=23$
4. $4002 \div 4=1000$ rem 2
5. $5 / 6=40 / 48 ; 7 / 8=42 / 48$ 40/48; 41/48; 42/48
6. $2 \times 4+0 \times 3=8$
$2 \times 4+1 \times 3=11$
$2 \times 4+2 \times 3=14$
$50-(2 \times 3) \rightarrow 44 \div 4=11$
$11+2=13$ dice
7. $399 / 1000 ; 398 / 500 ; 410 / 1000 ; 420 / 1000 ; 300 / 1000$
$2 / 5=400 / 1000 \rightarrow 399 / 1000$ is closest to $2 / 5$
8. $1 / 2+1 / 8+1 / 8=6 / 8=3 / 4$
$\mathrm{R} 15=1 / 4 \rightarrow$ Pocket money $=4 \times \mathrm{R} 15=\mathrm{R} 60$
9. $230-60=170 ; 170 \div 2=\mathrm{R} 85$
10. $36 \times 37=1332$
11. Jane eats $2 \times 12$ sweets in 5 minutes; she eats $2 \times 24$ sweets in 10 minutes. Jane eats 48 sweets in 10 minutes
12. $50-30=20 ; 41-30=11 ; 35-30=5$

Of the 20 learners who do not like both, 11 like comedy and 5 like action films
$20-11-5=4$
18. Length $=88 \mathrm{~cm} \rightarrow 11$ tins ; Width $=44 \mathrm{~cm} \rightarrow 4$; Height $=40 \mathrm{~cm} \rightarrow 5$ tins
$11 \times 4 \times 5=220$
19. $7 \times 2=14 \rightarrow 5$ extra wheels $\rightarrow 5$ tricycles $\rightarrow 2$ bicycles
20. $4 \div 2 \times 3=6 ; 6 \div 2 \times 3=9 \mathrm{~cm}$
22. Row $2=2+1$

Row $3=3+2$
Row $4=4+3$
Row $50=50+49=99$
23. Row $50+$ Row $1=99+1=100$

Row $49+$ Row $2=98+2=100$
$25 \times 100=2500$
24. $15 \times 15=225$
25. $50 \times 51=2550$

## GRADE 7(1)

2. $3 \times 3-3+3=9-3+3=6+3=9$
3. $n$th number $=2 \times n-1$, so $83^{\text {rd }}$ number $=2 \times 83-1=165$
4. \& 5 .

5. $1+\frac{1}{1+\frac{2}{3}}=1+\frac{1}{\frac{5}{3}}=1+\frac{3}{5}$
6. We know: $\frac{\text { Sum of numbers }}{11}=8$, so Sum of numbers $=11 \times 8=88$

If the new number is $x$, then $\frac{88+x}{12}=11$. So $x=12 \times 11-88=44$
8. Add all together: $2 \mathrm{~A}+2 \mathrm{~B}+2 \mathrm{C}=42$, so $\mathrm{A}+\mathrm{B}+\mathrm{C}=21$
9. $\mathrm{B}+\mathrm{A}+\mathrm{C}=21$ and $\mathrm{A}+\mathrm{C}=16$, so $\mathrm{B}+16=21$
10. The smallest is $10 \times 10=100$. The largest, by guess-and-improvement $=31 \times 31=961$. Count them!
11. \# Triangles $=2 \times$ squares +2 , or $2 \times($ squares +1$)$. So Triangles ( 6$)=2 \times 6+2=14$
12. Triangles $(60)=2 \times 60+2=122$
13. $2 \times x+2=60$, so $x=29$
14. Make a list, varying the numbers systematically. If the digits are $a, b, c$ and $d$ :
abcd, abdc, acbd, acdb, adbc, adcb and similarly if the first digit is b, c, and d. So $6 \times 4=24$

15. $2 \times(7+8+9)=2 \times 24$
16.

|  | c | d |
| :---: | :---: | :---: |
| a | 12 | 20 |
| b | 21 | D |

17. Volume $=$ area of base $\times$ length $=7 \mathrm{~cm}^{2} \times 12 \mathrm{~cm}=84 \mathrm{~cm}^{3}$

Or think of cutting out a rectangular prism:
Volume $=4 \times 4 \times 12-3 \times 3 \times 12=7 \times 12$
18. The first digit can be $2,4,6,8$. The second digit can be $0,2,4,6,8$, which gives $4 \times 5=20$ possible combinations
19. The $6^{\text {th }}$ column is given by $6 \times$ row $n$.

So the last number in row 80 is $6 \times 80=480$. Then row 81 is $481,482,483, \ldots$
20. Filling: In 1 minute $\frac{1}{12}$ of bath fills

Emptying: In 1 minute $\frac{1}{18}$ of bath empties
Together: In 1 minute $\frac{1}{12}-\frac{1}{18}=\frac{1}{36}$ of batch fills. So the whole bath $\left(\frac{36}{36}\right)$ fills in 36 minutes
21. Fill in numbers in the calendar, and test each statement with the numbers.
22. We know $a+d=c+b$, so $a+b+c+d=a+d+c+b=2 \times(a+d)=52$.

So $a+d=26$, so $a+(a+8)=26$, so $a=9$
24. 3 lines from two corners divide the triangle in $4 \times 4$ sections

10 lines from two corners will divide the triangle in $11 \times 11$ sections $=121$
25. $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \ldots \times \frac{2004}{2005} \times \frac{2005}{2006}=1 \times \frac{2}{2} \times \frac{3}{3} \times \ldots \times \frac{2005}{2005} \times \frac{1}{2006}=\frac{1}{2006}$

## GRADE 7(F)

1. $5 \times 3-2 \times 1=13$
$6 \times 2-2 \times 1=10$
$13+10=23$
2. $3+3+5+2+4+2+6+1=26$
3. Red square $=3 \times 3=9$ (The two semi circles outside the $3 \times 3$ square cancel out the two inside the square

4. $3 \times 75+6 \times 66=225+396=621$
$621 \div 9=69 \mathrm{~kg}$
5. $64-2=62$
$62 \div 2=31$
6. $\mathrm{R} 36,15 \div 1114 \times 100=\mathrm{R} 31,71$
7. $2 \times 3$ \{ 2 big triangles make one rectangle $\}+2 \times 2$ \{square between two big triangles $\}+1$ \{two small triangles $\}$ $=6+4+1=11$
8. Sum of even numbers $=102 \times 25=2550$

Sum of odd numbers $=100 \times 25=2500$
$2550-2500=50$
10. In four years time Sandy will be 7 and Mandy will be 14. At this moment Sandy is 3 years old and Mandy is 10 years old. $3+10=13$
13. If the dimensions of the room is $a$ by $b$ by $c$, then the area to paint is $\mathrm{A}=2 a b+2 a c+2 b c$

Double the dimensions are $2 a$ by $2 b$ by $2 c$, so the area to paint is $\mathrm{D}=2(2 a)(2 b)+2(2 a)(2 c)+2(2 b)(2 c)=4 \times \mathrm{A}$
14. $9 \times 9=81$
15. $1,2,4,5,8,10,16,20,25,40,50,80,100,125,200,250,400,500,1000,2000(20)$
17. 799; 979; 997; 889; 898; 988 (6)
19. $11 \times 8=88 ; 11 \times 12=132 ; 132-88=44$
20. $12 \div 4=3 ; 3 \times 3=9$
21. Filling: In 1 minute $\frac{1}{12}$ of bath fills

Emptying: In 1 minute $\frac{1}{18}$ of bath empties
Together: In 1 minute $\frac{1}{12}-\frac{1}{18}=\frac{1}{36}$ of batch fills. So the whole bath $\left(\frac{36}{36}\right)$ fills in 36 minutes
22. Row $1=1$ dot; row $50=50$ dots; row $1+$ row $50=51$ dots

Row $2=2$ dots; row $49=49$ dots; row $2+$ row $49=51$ dots $51 \times 25=1275$ dots
23. Look for structure and pattern!
$\mathrm{N}_{1}=1$
$\mathrm{N}_{2}=5=2^{2}+1$
$\mathrm{N}_{3}=10=3^{2}+1$
$\mathrm{N}_{4}=17=4^{2}+1$
Test the numbers! $30^{2}+1=901$ is the only one
24. If they mine $5 \%$, then $95 \%=0,95$ is left. So:

After 1 year, $95 \%$ is left
After 2 years, $95 \%$ of $95 \%=0,95 \times 0,95$ is left
After 3 years, $95 \%$ of $95 \%$ of $95 \%=0,95 \times 0,95 \times 0,95=0,95^{3}$ is left
After 10 years, $0,95^{10}$ is left. Use a calculator: $0,95^{10}=0,598=59,8 \%$ is left
After 13 years, $0,95^{13}$ is left. $0,95^{13}=0,513=51,3 \%$, more than half, is left
After 14 years, $0,95^{14}$ is left. $0,95^{14}=0,487=48,7 \%$, less than half, is left
25. $(1+1) \times\left(1+\frac{1}{2}\right) \times \ldots$

$$
\begin{aligned}
& =\frac{2}{1} \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \ldots \times \frac{100}{99} \times \frac{101}{100} \\
& =\frac{2}{2} \times \frac{3}{3} \times \frac{4}{4} \times \frac{5}{5} \times \ldots \times \frac{100}{100} \times \frac{101}{1} \\
& =101
\end{aligned}
$$

