NOTES ON 2007 MEMORANDUM

These notes are necessarily brief and often formal and symbolic.
Many questions could be answered using primitive methods, e.g. "If today is Wednesday, what day of the week will it be 100 days from now? " can be done by counting. That would be laborious, time-consuming and error-prone. The essence of a mathematical approach is to work more smartly by using appropriate representations to model the situation and to exploit the inherent structures and patterns in the situation.

GRADE 4(1)

3. Straighten the string. Two loops of 1 cm make it $5 \mathrm{~cm}+1 \mathrm{~cm}+1 \mathrm{~cm}=7 \mathrm{~cm}$
4. 3 hours before $16: 45$ is $13: 45$, so 2 hours and 55 minutes (5 min less) is 13:50
5. The watch gains 2 minutes every day (24 hours) for 7 days $=2 \mathrm{~min} /$ day $\times 7$ days $=14$ minutes
6. Rotate (in your mind!) the pieces to fit ...
7. With 6 loose cubes, there would be 36 faces. Subtract the 10 non-visible faces ...
8. Place value!
9. If Zuki has marbles, Zinkle has $\boldsymbol{\bullet}-15$. Together they have $2 \times-15=95$ marbles. So $\boldsymbol{\varphi}=55$
10. Do not rush into calculation - analyse the structure: $826 \times 243-824 \times 243=(826-824) \times 243=2 \times 243$
11. The numbers must be different, so $99+98+97=(100-1)+(100-2)+(100-3)=300-6$
12. 18×10
13. If the $21^{\text {th }}$ is a Monday, then also the $14^{\text {th }}, 7^{\text {th }}$ and $0^{\text {th }}$ are Mondays. The $0^{\text {th }}$ is the last day of the previous month, so the next day is the $1^{\text {st }}$ of this month, so it is a Tuesday
14. $\frac{3}{4}+\frac{3}{4} \rightarrow 1 \frac{1}{2}+\frac{3}{4} \rightarrow 2 \frac{1}{4}+\frac{3}{4} \rightarrow 3+\frac{3}{4} \rightarrow 3 \frac{3}{4}+\frac{3}{4} \rightarrow 4 \frac{1}{2}$
(1) (2)
(3)
(4)
(5)
(6)
15. Try the numbers one by one, e.g. $20 \times 3 \rightarrow 60+8 \rightarrow 68 \div 2 \rightarrow 34 \boxed{-6} \rightarrow 28 \neq 20$
16. If the number of tables is T, then $2 \times T+2=58$, so $T=(58-2) \div 2=28$
17. Draw it physically! See diagram. It always helps to write!
18. $\frac{1}{5}=\frac{8}{40}$ and $\frac{1}{4}=\frac{10}{40}$, so $\frac{8}{40}<\frac{9}{40}<\frac{10}{40}$, which means $\frac{1}{5}<\frac{9}{40}<\frac{1}{4}$
19.

23. Do not count or calculate - look for structure, e.g.

For Pattern 3: $3+2 \times 2$
For Pattern 4: $\quad 4+2 \times 3$
For Pattern 100: $100+2 \times 99$
24. List all the possibilities and be systematic:

$1+1=2$	$2+2=4$	$3+3=6$	$4+4=8$	$5+5=10$	$6+6=12$
$1+2=3$	$2+3=5$	$3+4=7$	$4+5=9$	$5+6=11$	

Any other combination will be a repetition - therefore 11 possible answers
25. Look for structure, a clever way of counting, e.g. every point is connected to every other point except itself, so at each of the 18 points on the circle there are 17 lines, in total 18×17. But each line is counted twice, so $18 \times 17 \div 2$

GRADE 4(F)

1. 1 pizza for 3 children

12 pizzas $\times 3$ children/pizza $=36$ children
4. These are multiples of 6 . Only $4182=6 \times 697$ is a multiple of 6
5. $33 \times 58=1914$
6. $09: 47$ to $10: 18=31$ minutes $12: 30=31 \mathrm{~min} .=13: 01$
7. Jason has $2 / 3$ of the stamps and Mary has $1 / 3$ of the stamps $96 \div 3=32$ stamps
8. $438-257=181 \mathrm{~km}$
9. $438+169=607 \mathrm{~km}$
10. Thabo takes 4 out of $12 ; 4 / 12=1 / 3$

He has to pay $1 / 3$ of R30 \rightarrow R10
11.

The tower is on your left if you look at the object from the back
12. $6,8 \div 2 \rightarrow 3,4 \div 2 \rightarrow 1,7 \div 2=0,85$
13. $24-24=0 ; 71 \times 3=213$ marbles
14. $\mathrm{R} 35,60 \mathrm{c} \div 40=\mathrm{R} 0,89 \mathrm{c}$
$\mathrm{R} 0,89 \mathrm{c} \times 15=\mathrm{R} 13,25 \mathrm{c}$
17. $8 \times 2+3 \times 2=22 \mathrm{~m}$
22. $100 \times 3=300$
24. $20 c+10 c+5 c$
$3 \times 10 c+5 c$
25. Number of blocks $=1+2+3+4+\ldots .+48+49+50=(1+50)+(2+49)+\ldots=25 \times 51=1275$

GRADE 5(1)

2. The numbers inside the square and the circle are 2 and 3.2 is not inside the triangle
3. $147 \mathrm{~mm}-103 \mathrm{~mm}=44 \mathrm{~mm}$
4. $100 \div 24=4$ rem 4 , i.e. 4 full days bringing us again to $10: 00$, plus 4 more hours, i.e. $11,12,13,14: 00$
5. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $7^{\text {th }}$ row has $2 \times 7-1$ dots
6. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $70^{\text {th }}$ row has $2 \times 70-1$ dots
7. $\mathrm{C}-$ a rotation to the right through 90°
8. Height $=12 \mathrm{~cm}+1,5 \mathrm{~cm} /$ day \times days. So Height after 30 days $=12+1,5 \times 30=57 \mathrm{~cm}$
9. $(150 \mathrm{~cm}-12 \mathrm{~cm}) \div 1,5 \mathrm{~cm} /$ day $=92$ days
10. One more than a multiple of 6 , so it is odd, so it cannot be A or B. Test the others: $4182 \div 6=697$
11. If a sack weighs $S \mathrm{~kg}$, then $3 \times S=S+30$, so $2 \times S=30$, so $S=15$. So $3 \times S=45 \mathrm{~kg}$
12. If the cold drink costs $\mathrm{R} x$, then the ice cream costs $\mathrm{R}(x+3)$ and the burger $\mathrm{R}(x+7)$. So $3 \times x+10=19$, so $x=3$
13. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there are 64 blocks
14. All the blocks of the bottom layer (32) and all the blocks round the side of the top layer (20)
15. Look at the structure: $2 \times 3+2=8 ; 2 \times 7+2=16$; so for a rectangle with length $20: 2 \times 20+2=42$
16.

19. Investigate the structure: $3,6,9, \ldots$ is the 3 -times table:

Pattern n	1	2	3	4		n
\# coins	3	6	9	12		$3 \times n$

20. 4 reds $=10$ greens $=3$ purples. So $12(3 \times 4)$ reds $=9(3 \times 3)$ purples
21. The number must start and end with 1 so list them systematically:
$\begin{array}{llllllllll}101 & 111 & 121 & 131 & 141 & 151 & 161 & 171 & 181 & 191\end{array}$
22. The structure is $1+2+3+4+5+6+\ldots+48+49+50=(1+50)+(2+49)+(3+48)+\ldots=51 \times 25$
23. If Penny has p coins and Alex has a coins: $p-4=a+4$. But $p=2 \times a$, so $2 \times a-4=a+4$, so $a=8$ and $p=16$
24. Be systematic, e.g. $32 \quad 23 \quad 43 \quad 13$

34	24	42	12

$\begin{array}{llll}31 & 21 & 41 & 14\end{array}$
25. If a small pizza costs s rands and a large pizza costs L rands: $2 s+1 L=5 s$, so $1 L=3 s$, so the cost is $L=3 \times \mathrm{R} 11,50=\mathrm{R} 34,50$

GRADE 5(F)

2. Lucy's mother is 24 years older than Lucy
$16+8=24$
In 8 years Lucy's mother will be 48
Lucy is 24 now.
3. $07: 20+45 \mathrm{~min}=08: 05$
4. $500 \div 12=41 \mathrm{rem} 8$

42 cartons
5. $360 \div 120=3$
$270 \div 90=3$
$22 \times 3=66$
6. Chapter 6 ends on page 245
$274-245=29$ (she has to read page 246 as well)
8. $150 \div 6=25$
$25 \times 5=125$
9. $1 / 8+25$ litres $=5 / 8$

25 litres $=4 / 8=1 / 2$
$25 \times 2=50$ litre tank
11. $500 \div 10=50$ (original number)
$50 \div 10=5$ (correct answer)
13. $365-5 \rightarrow 360 \div 6=120$
14. Marty ate $24 \div 6=4$ slices

Veronica ate $24 \div 4=6$ slices
Ron ate $24 \div 3=8$ slices
$24-8-6-4=6$ slices for Justin
15. Two people at the end +2 people per table: $20 \times 2+2=42$ people
16. $58-2=56$
$56 \div 2=28$ tables
17. 8 kids: $8 \times 6=48$
$48+7=55$
18. $420 \times 4=1680$
$230 \times 4=920$
$270 \times 4=1080$
$1680+920+1080=3,68 \mathrm{~m}$
19. $270 \times 4=1080$
$420 \times 2=840$
$230 \times 2=460$
Ribbon and knot $=400 \mathrm{~mm}$
$1080+840+460+400=2,78 \mathrm{~m}$
23. Last row $=99$ blocks, $2^{\text {nd }}$ to last row $=97$ blocks

Last row $+1^{\text {st }}$ row $=100$
$2^{\text {nd }}$ row $+2^{\text {nd }}$ to last row $=100$
25 (pairs of rows) $\times 100=2500$ blocks
24. $50+49=99$
25. Last row $=37+36=73$
72×18 pairs $+73=1369$

GRADE 6(1)

1. Make equal parts. Each small square is half of the next bigger square.

So half of half of the big square is a quarter of the big square
2. There are 8 columns, each with $2+4+6$ cubes. So $8 \times 12=96$ cubes
5. $\frac{1}{7}=\frac{5}{35}$ and $\frac{1}{5}=\frac{7}{35}$ so $\frac{6}{35}$ is exactly in between them. Or $\left(\frac{1}{5}+\frac{1}{7}\right) \div 2=\left(\frac{7}{35}+\frac{5}{35}\right) \div 2=\frac{6}{35}$
7. $\frac{5}{100}=\frac{x}{3000}$
8. Continue the patterns: $17,22,27,32,37,42,47,52, \ldots$ and $17,24,31,38,45,52, \ldots$

Or, the lowest common multiple of 5 and 7 is 35 , so $17+35$ will be common and every 35 after that
9. Look at the structure: For n dice, the number of visible faces is $n \times 3+2$. So for 75 dice, $75 \times 3+2$
10. Every date is one weekday later in the next year, because $365 \div 7=52$ rem 1 . Then we must account for leap years $\left(^{*}\right)$:

Year	1995	1996^{*}	1997	1998	1999	2000^{*}	2001	2002	2003
Day	Tue	Wed	Fri	Sa	Su	Mo	We	Thu	Fri

12. "Manually" try different orientations to find the maximum!
13. If the sides are a and b, then $2 a+2 b=480$, so $a+b=240$. But one side is double the other, so $a+2 a=240$, so $3 a=240$
14.

B	C	M
A	2	N
1	D	

15. $3 \times(1+2+3)$
16. Vary the possibilities systematically. First note that she could not draw 1,3 or 5 games, otherwise her total would be a fraction. If she drew 6 games her total was $6 \times \frac{1}{2}=3$. If she drew 4 and won 2 her total was $2 \times 1+4 \times \frac{1}{2}=4$. If she drew 2 and won 4 her total was $4 \times 1+2 \times \frac{1}{2}=5$
17. Vary the numbers systematically and note the behaviour of the product of the numbers:
$1+17=18$ and $1 \times 17=17 \quad 6+12=18$ and $6 \times 12=72$
$2+16=18$ and $2 \times 16=32 \quad 7+11=18$ and $7 \times 11=77$
$3+15=18$ and $3 \times 15=45 \quad 8+10=18$ and $8 \times 10=80$
$4+14=18$ and $4 \times 14=56 \quad 9+9=18$ and $9 \times 9=81$
$5+13=18$ and $5 \times 13=65 \quad 10+8=18$ and $10 \times 8=80$
18. ? $=000 \Delta \Delta \Delta \Delta=0 \Delta \Delta \Delta+\frac{1}{2}(0000 \Delta \Delta)=6 \square+4 \square$ from first two balances
19. If Sunday's date is x , then $x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+(x+6)=126$, so $7 \times x+21=126$, so $x=15$
20. The same structure as $19!9 \times x+36=135$, so $9 \times x=99$, so $x=11$
21. Represent and organise the info in a table:

Fill in what they are not:

	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ali				
Oli	\mathbf{x}		\mathbf{x}	
Uli	\mathbf{x}	\mathbf{x}		\mathbf{x}
Eli		\mathbf{x}		\mathbf{x}

So Uli is 7, the others not:

	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ali			\mathbf{x}	
Oli	x		x	
Uli	x	x	yes	x
Eli		x	x	x

So Eli is 5, Ali is not 5 :

	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ali	\mathbf{x}		x	
Oli	x		x	
Uli	x	x	yes	x
Eli	yes	x	x	x

22. See 21
23. Investigate the structure: The sums in the Rows are $1,2,4,8,16, \ldots$ Use this pattern!

Rown	0	1	2	3	4	5	6		n
Sum	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}		2^{n}

24. If a bubble gum cost B cents and a chocolate costs C cents:
$B+C=90$ and $10 B+5 C=470$, so $5 B+5(B+C)=470$, so $5 B+5 \times 90=470$, so $B=4$, so $C=86 \mathrm{c}$
25. Do not count or calculate, investigate the structure: $1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots 20 \times 20$

GRADE 6(F)

1. $56+58+60=174$
2. $728 \div 8=91$
3. $724-4 \rightarrow 720 \div 8=90$
4. $6 \times 6=36$
$6+6=12$
5. $25+20+30+15+35=125$
6. $4653-2583 \rightarrow 2070 \div 90=23$
7. $1 \times 2-1=1$
$4 \times 2-1=7$
$7 \times 2-1=13$
$2 \times 2-1=3$
8. $1 / 2+1 / 8++1 / 8=3 / 4$

R15 $=1 / 4$
$\mathrm{R} 15 \times 4=\mathrm{R} 60$
13. $36 \times 37=1332$
14. $2 / 3 \div 2=1 / 3$
$12 \div 2=6$
$6 \times 3=18$
$1 / 3 \times 3=1$ cup of milk
15. 2 books $=6 \mathrm{~kg}$

1 book $=3 \mathrm{~kg}$
16. $\mathrm{R} 12=1 / 4$
$\mathrm{R} 12 \times 4=\mathrm{R} 48$
$3 / 4 \div 2=3 / 8$
$3 / 8$ of R48 = R18
17. $10+10=20$
18. Diana is 3 years older than Joe Joe is two years older than Cindy Diana is five years older than Cindy $8+5=13$
19. A: $\mathrm{R} 800 \times 12=9600$

B: R110 $\times 80=8800$
21. $5 \times 4,8=24$
$4,5+4,6+4,7+5=18,8$
$24-18,8=5,2$
24. $15+20+25+30=90$

15 bananas in the last hour
25. $50 \times 4+1=201$

GRADE 7(1)

3. $(4 \times 75)+(6 \times 65)=690 \mathrm{~kg}$ all together. So the average is $690 \mathrm{~kg} \div 10$ children $=69 \mathrm{~kg} /$ child
4. The "vertical" formula is $2 \times a+2$. Find a so that $2 \times a+2=64$. Or $(a+1) \times 2=64$, so $a=64 \div 2-1$

Or the "horizontal" formula is $4+2 \times(a-1)$, so find a so that $4+2 \times(a-1)=64$
5.

6. Volume $=15 \mathrm{~cm} \times 8 \mathrm{~cm} \times x \mathrm{~cm}=120 \mathrm{~cm}^{3}$, so $x=1$. So area is $(15 \mathrm{~cm}+2 \mathrm{~cm}) \times(8 \mathrm{~cm}+2 \mathrm{~cm})=17 \mathrm{~cm} \times 10 \mathrm{~cm}$
7. $(2-1)+(3-2)+(4-3)+\ldots+(100-99)+(101-100)=1+1+1+1+\ldots 100$ times $=100$
8. If the prices are $\mathrm{R} p$ and $\mathrm{R} b$, then $3 p+5 b=44$, so $3 p+3 b+2 b=44$, so $3(p+b)+2 b=44$, so $3 \times 10+2 b=44$

Or: $p+b=10$, so $3 p+3 b=30$. But $3 p+5 b=44$, so $2 b=14$
9. $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$
10. That is what is meant with a random event - it is independent of what happened before, it has no memory!
11. List them all: $20,22,24,26,28$ and similarly for the 40 s. 60 s and 80 s, so $4 \times 5=20$
12. If the old price is x, then the cash price is $0,9 \times(1,1 \times x)=0,99 \times x<x$
13. The order in which we add numbers does not matter! So the final number is $1+2+3+4+\ldots+99+100$ $1+2+3+4+\ldots+99+100=(1+100)+(2+99)+(3+98)+\ldots=101 \times 50$
14. Do not rush into calculation! Look for structure! $\frac{24 \times 18 \times 15+24 \times 18 \times 13+24 \times 18 \times 7}{24 \times 18}=\frac{24 \times 18 \times(15+13+7)}{24 \times 18}=35$
15. If the dimensions of the room is a by b by c, then the area to paint is $\mathrm{A}=2 a b+2 a c+2 b c$

Double the dimensions are $2 a$ by $2 b$ by $2 c$, so the area to paint is $\mathrm{D}=2(2 a)(2 b)+2(2 a)(2 c)+2(2 b)(2 c)=4 \times \mathrm{A}$
16. If the length and width are $l \mathrm{~m}$ and $w \mathrm{~m}$, then Area $=l \times w=100$. But $l=4 \times w$, so $4 \times w \times w=100$, so $w=5$ and $l=20$
17. In middle row the missing number is $18-(11+6)=1$, so in right column $X=18-(1+10)=7$
18. Make equal parts! $\frac{4}{8}=\frac{1}{2}$
19. $\triangle \mathrm{ADR}=\triangle \mathrm{ABQ}=\frac{1}{4} \mathrm{ABCD}$, so subtract the two white triangles: $1-\frac{1}{2}=\frac{1}{2}$

20. If they mine 5%, then 95% is left. So:

After 1 year, 95% is left
After 2 years, 95% of $95 \%=0,95 \times 0,95=0,95^{2}$ is left
After 3 years, 95% of 95% of $95 \%=0,95 \times 0,95 \times 0,95=0,95^{3}$ is left
After 10 years, $0,95^{10}$ is left. Use a calculator: $0,95^{10}=0,598=59,8 \%$ is left
After 13 years, $0,95^{13}$ is left. $0,95^{13}=0,513=51,3 \%$, more than half, is left
After 14 years, $0,95^{14}$ is left. $0,95^{14}=0,487=48,7 \%$, less than half, is left
21. You can draw it, or investigate numerical patterns for a triangle, square, pentagon, hexagon, etc.

Or you can reason it out: At each vertex of an n-gon there are $n-3$ diagonals because the point is connected to every other point, except to itself and to the two adjacent points (these are sides of the n-gon). So at n vertices there are $n \times(n-3)$ diagonals, counted twice. So the formula is $\mathrm{D}(n)=n \times(n-3) \div 2$, so $\mathrm{D}(8)=8 \times(8-3) \div 2$
22. Divide the polygon into triangles, because we know the angles of a triangle totals 180° :

A square (4-gon) into 2 triangles, so each angle is $2 \times 180^{\circ} \div 4$
A pentagon (5-gon) into 3 triangles, so each angle is $3 \times 180^{\circ} \div 5$
A hexagon (6-gon) into 4 triangles, so each angle is $\quad 4 \times 180^{\circ} \div 6$
An n-gon into $n-2$ triangles, so each angle is $\quad(n-2) \times 180^{\circ} \div n$

23. The volume of the offices $=10 \mathrm{~m} \times 8 \mathrm{~m} \times 2,4 \mathrm{~m}=192 \mathrm{~m}^{3}$ and $180 \mathrm{~m}^{3}<192 \mathrm{~m}^{3}<280 \mathrm{~m}^{3}$
24. The formula for $P_{n}=5 n+1$
25. For every $10^{\circ} \mathrm{C}$ there is a constant difference of $18^{\circ} \mathrm{F}$. So a $1^{\circ} \mathrm{C}$ change equals a $1,8{ }^{\circ} \mathrm{F}$ change. So $32^{\circ} \mathrm{C}=86+2 \times 1,8^{\circ} \mathrm{F}$ Or the formula is $\mathrm{F}=1,8 \times \mathrm{C}+32$

GRADE 7(F)

1. Use trial and error to find that only $26 \times 27=702$. So $26+27=53$
2. $4+4-4 \div 4=4+4-1=8-1 \neq 1$
3. $6 \times 2=12$
4. Length \times Breadth $=8 \times 4=32$
5. $1+\frac{1}{1+\frac{2}{3}}=1+\frac{1}{\frac{5}{3}}=1+\frac{3}{5}$
6. There is a general structure here: The denominators is twice the numerator +1 , i.e. $\frac{\diamond}{2 \times \diamond+1}$

We can therefore investigate a general pattern $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \frac{6}{13}, \frac{7}{15}, \ldots$
Check with your calculator: $\frac{1}{3}=0,333 \ldots, \frac{2}{5}=0,4, \ldots$ So $\frac{1}{3}<\frac{2}{5}<\frac{3}{7}<\frac{4}{9}<\frac{5}{11}<\frac{6}{13}<\ldots$
Conclusion: the larger the denominator, the larger this kind of fraction, so $\frac{11}{23}$ is the largest
7. We know: $\frac{\text { Sum of numbers }}{11}=8$, so Sum of numbers $=11 \times 8=88$

If the new number is x, then $\frac{88+x}{12}=11$. So $x=12 \times 11-88=44$
8. Speed will catch up at $(100-90) \mathrm{km} / \mathrm{h}=10 \mathrm{~km} / \mathrm{h}$, so he will catch up 30 km in 3 hours
9.

10. Area $=1 / 2 \times 8 \times 6$
11. $21+21=42$
12. $8 \times 8=64 ; 9+9=18$
13. $64 \div 2=32 ; 31 \times 31=961$
15. $1 / 3+(1 / 4$ of $2 / 3)=4 / 12+2 / 12=6 / 12 ; 24=6 / 12 ;$ Penny originally had 48 marbles; $1 / 3$ of $48=16$
16. $7 \times 5=35$
17. length $=4 \times$ width ; perimeter $=4 \times$ width $+4 \times$ width $+1 \times$ width $+1 \times$ width $=10$ widths
$100 \div 10=10 ; 10 \times 40=400$
18. $6 \times 81-3=483$
19. $4321 \div 6=720$ remainder $1 ; 721^{\text {st }}$ row
20. $50 \times 50=2500$
22. 2 drinks + ice cream $=$ R15; 1 drink +2 ice creams $=$ R12;

3 drinks +3 ice creams $=\mathrm{R} 15+\mathrm{R} 12=\mathrm{R} 27$
$\mathrm{R} 27 \div 3=\mathrm{R} 9$
23. 2 drinks +1 ice cream $=\mathrm{R} 15 ; 1$ drink +1 ice cream $=\mathrm{R} 9 ; 1$ drink $=\mathrm{R} 15-\mathrm{R} 9=\mathrm{R} 6$
24. Test systematically:
$(1,31)$ and $(1,31): 1+11+1 \times 31=63$
$(3,15)$ and $(15,3): 3+15+3 \times 15=63$
$(7,7): 7+7+7 \times 7=63$
25. Alphans use remainders when dividing by 6 !

So $2 \times 5+4=14_{10}=\operatorname{Rem}(14 \div 6)=2$ on Alpha

