NOTES ON 2009 MEMORANDUM

These notes are necessarily brief and often formal and symbolic.
Many questions could be answered using primitive methods, e.g. "If today is Wednesday, what day of the week will it be 100 days from now?" can be done by counting. That would be laborious, time-consuming and error-prone. The essence of a mathematical approach is to work more smartly by using appropriate representations to model the situation and to exploit the inherent structures and patterns in the situation.

GRADE 4(1)

1. $5+3=8$, while the others all have a sum of 7
2. Half of 8×8
3. Digital, 24 hour clock ... it is in the evening, so $22: 10$
4. $\mathrm{R} 35 \div 4=(\mathrm{R} 32 \div 4)+(\mathrm{R} 3 \div 4)=\mathrm{R} 8+\mathrm{R} 0,75=\mathrm{R} 8,75$
5. There is a pattern of $+14,+14,+14$ in the numbers
6. $\frac{3}{4} \div \frac{1}{8}=\frac{6}{8} \div \frac{1}{8}$. How many $\frac{1}{8}$ are there in $\frac{6}{8}$?
7. B is a mirror-image in a horizontal or vertical line of symmetry, as shown
8.

10. $20 \mathrm{~min}+15 \min =35 \min .08: 30-00: 30=08: 00-00: 05=07: 55$
11. $35000 \mathrm{~m} \ell \div 35 \mathrm{~m} \ell=100$
13. Investigate the structure by finding a pattern in special cases:

Stack number	1	2	3	4		n
Number of blocks	1	4	9	16		
	1×1	2×2	3×3	4×4		$n \times n$

14. 5 small cubes to a side. So 5×5 in bottom layer, with 5 layers, so $5 \times 5 \times 5$
15. $274-246+1=29$

Check - if you read page 1 and 2 , you have read 2 pages, not $2-1=1$ page
16. 8 cubes on each of the 6 sides. But then they are all counted twice! So $4 \times 8 \div 2$
17. Bottom level: $3 \times 3=9$ blocks, second level has 1 less $=8$ blocks, top level has 5 blocks

18. $x-4+5-6=3$, so $x-5=3$ so $x=8$
19. $2 \times \mathrm{T}+2=38$, so $\mathrm{T}=(38-2) \div 2=18$
20. 120 km in 60 min , so 20 km in 10 min , so 200 km in 100 min , so the time is $11: 40$
21. $7,17,27,37, \ldots 77$ (two!), 87,97 is 11 , plus $70,71,72, \ldots 77,78,79$ is another 9 , so 20
22. $M+(M+30)=114$, so $2 \times M=84$, so Monde weighs 42 kg
23. Investigate the structure by finding a pattern in special cases:

Row number	1	2	3	4		n
Number of triangles	1	3	5	7		$2 \times n-1$

So in Row 50 there are $2 \times 50-1$ triangles
24. Look at the structure in the picture!

First row: $1=1 \times 1$
First 2 rows: $1+3=4=2 \times 2$
First 3 rows: $1+3+5=9=3 \times 3$
So, in 50 rows: $1+3+5+7+\ldots$ to 50 numbers $=50 \times 50$ triangles
25. Investigate the structure by finding a pattern in special cases:

Number of storeys	2	3	4	5		n
Number of matches	6	9	12	15		$3 \times(n+1)$

So, for 10 storeys Thandi needs 3×11 matches

GRADE 4(F)

1. $\frac{1}{8}<\frac{1}{4}<\frac{1}{2}$
2. Check each answer, e.g. $9=3 \times 3 ; 11=2 \times 3+5 ; 13=2 \times 5+3$, etc. You know, or you learn from these calculations, that the sum of three odd numbers is odd, so 12 is not possible!
3. Straighten the string. Two loops of 1 cm make it $5 \mathrm{~cm}+1 \mathrm{~cm}+1 \mathrm{~cm}=7 \mathrm{~cm}$
4. 3 hours before $16: 45$ is $13: 45$, so 2 hours and 55 minutes (5 min less) is at $13: 50$
5. The watch gains 2 minutes every day (24 hours) for 7 days $=2 \mathrm{~min} /$ day $\times 7$ days $=14$ minutes
6. $10 \times 10 \times 10=1000$ or from 001 to 999 gives 999 combinations, plus 000 gives 1000
7. Start "painting" (numbering) the sides ...

8. With 6 loose cubes, there would be 36 faces. Subtract the 10 non-visible faces ...
9. If Zuki has \boldsymbol{v} marbles, Zinkle has \boldsymbol{v} 15. Together they have $2 \times-15=95$ marbles. So $\boldsymbol{\bullet}=55$
10. The numbers must be different, so $99+98+97=(100-1)+(100-2)+(100-3)=300-6$
11. $\frac{3}{4}+\frac{3}{4} \rightarrow 1 \frac{1}{2}+\frac{3}{4} \rightarrow 2 \frac{1}{4}+\frac{3}{4} \rightarrow 3+\frac{3}{4} \rightarrow 3 \frac{3}{4}+\frac{3}{4} \rightarrow 4 \frac{1}{2}$
(1) (2)
(3)
(4)
(5)
(6)
12. A rings on the hour and half-hour. B rings at 08:00, 08:35, 09:10, 09:45, 10:20, 10:55 and 11:30
13. If the 21th is a Monday, then also the 14th, 7th and 0th are Mondays.

The 0th is the last day of the previous month, so the next day is the 1st of this month, so it is a Tuesday
16.

17. 6 and 4 is even, 6 is bigger than $4,6+4$ is a multiple of 5
18. For 6 milktarts she needs 8 cups of milk, so for $8\left(6+2=6+\frac{1}{3}\right.$ of 6$)$ milktarts she needs $8+\frac{1}{3}$ of $8=8+\frac{1}{3}$ of $(6+2)=$ $8+\frac{1}{3}$ of $6+\frac{1}{3}$ of $2=8+2+\frac{2}{3}=10 \frac{2}{3}$ cups of milk.
19. With 15 eggs $(9+6)$ you can make $6+\frac{2}{3}$ of 6 milktarts $=6+4=10$ milktarts
20.

Invent some notation and count systematically, e.g.:
Areas 1, 2, 3, 4, 5 and 6 each form a triangle (6)
Two areas 1-4 and 3-6 each form a triangle (2)
Three areas 4-1-2, 2-3-6, 3-6-5 and 5-4-1each form a triangle (4)
21. $\frac{1}{5}=\frac{8}{40}$ and $\frac{1}{4}=\frac{10}{40}$, so $\frac{8}{40}<\frac{9}{40}<\frac{10}{40}$
22. Through systematic elimination, e.g.

A in the top row must be 1,8 or 6 . But A in the right column cannot be 8 or 1 , so A is 6 B in the bottom row must be 9,4 or 2 . But A in the right column cannot be 9 or 4 , so B is 2 C in the top row must be 1 or 8 . But C in the left column cannot be 1 , so C is 8 . So E is 1
D in the bottom row must be 9 or 4 . But D in the left column cannot be 4 , so D is 9 . So F is 4
We only have 3 , 5 and 7 left. But G cannot be 3 or 7 , so $G=5$. H cannot be 3 , so $\mathrm{H}=7$ and $\mathrm{X}=3$
23. Let the children be A, B, C, D and E. List all the possibilities systematically, note patterns and structure:
A vs B
B vs C
C vs D
D vs E
A vs C
B vs D
C vs E
A vs D
B vs E
A vs E

$\mathbf{v s}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}		X	X	X	X
\mathbf{B}			X	X	X
\mathbf{C}				X	X
\mathbf{D}					X
\mathbf{E}					

24. A vs B B vs C ... H vs I I vs J

A vs C B vs D
H vs J
A vs D $\quad B$ vs E
A vs E B vs F
A vs F \quad B vs G
A vs $G \quad B$ vs H
A vs H B vs I
A vs I B vs J
A vs J
The structure is: $9+8+\ldots .+2+1=\mathbf{4 5}$
25. The structure is $1+2+3+4+5+6+\ldots+48+49+50=(1+50)+(2+49)+(3+48)+\ldots=51 \times 25$

GRADE 5(1)

1. There are 5 tiles in every metre because $1000 \mathrm{~cm} \div 200 \mathrm{~cm}=5$. So $15 \times 10=150$ tiles
2. The numbers inside the square and the circle are 2 and 3.

2 is not inside the triangle
3. Check systematically: $360 \div 1=360,360 \div 2=180, \ldots, 360 \div 6=60 \ldots$. But $360 \div 7=51.428$..
4. $\mathrm{C}-$ a rotation to the right through 90°
5. 4 reds -10 greens -3 purples. So $12(3 \times 4)$ reds $-9(3 \times 3)$ purples
6. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $7^{\text {th }}$ row has $2 \times 7-1=13$ dots
7. $n^{\text {th }}$ row has $2 \times n-1$ dots, so $70^{\text {th }}$ row has $2 \times 70-1=139$ dots
8. $100 \div 24=4$ rem 4, i.e. 4 full days bringing us to $10: 00$, plus 4 more hours, i.e. $11,12,13,14: 00$ Or $10+100=110,110 \div 24=6$ rem 14
9. Height $=12 \mathrm{~cm}+1,5 \mathrm{~cm} /$ day \times days. So Height after 30 days $=12+1,5 \times 30=57 \mathrm{~cm}$
10. $(150 \mathrm{~cm}-12 \mathrm{~cm}) \div 1,5 \mathrm{~cm} /$ day $=92$ days
11. One more than a multiple of 6 , so it is odd, so it cannot be A or B. Test the others: $4182 \div 6=697$
12. If a sack weighs $S \mathrm{~kg}$, then $3 S=S+30$, so $2 S=30$, so $S=15$. So $3 S=45 \mathrm{~kg}$
13. Investigate the structure by finding a pattern in special cases:

Pattern number	1	2	3	4		n
Number of coins	3	6	9	12		$3 \times n$

14. Mathematics is $\frac{1}{4}$ of his time, and this is 2 hours. So $\frac{4}{4}$ of his time is 4×2 hours $=8$ hours
15. In the bottom layer there are $8 \times 4=32$ blocks, so in two layers there are 64 blocks
16. All the blocks of the bottom layer (32) and all the blocks round the side of the top layer (20)
17. Look at the structure:

Length 3 : $2 \times 3+2=8$
Length 7: $2 \times 7+2=16$
So for length 20: $2 \times 20+2=42$
18.

19. 75 c more per week, so in 12 weeks $12 \times 75 \mathrm{c}=\mathrm{R} 9$
20. You can it with 1 , 2 or 3 shots ...
$18=7+11$
$20=9+11$
$23=7+7+9$
$27=9+9+9$
21. The number must start and end with 1 so list them systematically:
$\begin{array}{llllllllll}101 & 111 & 121 & 131 & 141 & 151 & 161 & 171 & 181 & 191\end{array}$
22. Share 30 litres in ratio 5 to 1 , i.e. 25 to 5
23. If Penny has p coins and Alex has a coins:
$p=2 \times a, p-4=a+4$, so $2 \times a-4=a+4$, so $a=8$, so $p=16$, so $p+a=24$
24. List them systematically:

4000
3100, 3010, 3001
2200, 2020, 2002
2110, 2101, 2011
2020, 2002. 2014
1300, 1030, 1003
1210, 1201
1120, 1102
1111
1030,1003
1021, 1012
25. If a small pizza costs s rands and a large pizza costs L rands: $2 s+1 L-=5 s$, so $1 L=3 s$, so the cost is $L=3 \times \mathrm{R} 11,50=\mathrm{R} 34,50$

GRADE 5(F)

1. First pick up 7 then 1 then 6 etc
2. Build a mental picture! B, E \& F
3. The trip is 31 minutes, so $12: 30+31$ minutes $=13: 01$
4. Use trial and error, i.e. try each of the given answers one by one
5. If the loser had Δ votes, the winner had $\Delta+1002$ votes. Together $2 \times \Delta+1002=39218$
6. $(2-1)+(3-2)+(4-3)+\ldots+(100-99)+(101-100)=1+1+1+1+\ldots 100$ times $=100$
7. R5 less for you and R5 more for her is R10
8. $274-246+1=29$ (Check: if you read page 1 and 2 , you have read 2 pages, not $2-1=1$)
9. $3+3+1+3+3+1+3+1+3+3=24 \mathrm{~cm}$
10. $41000 \mathrm{~g}-725 \mathrm{~g}=40275 \mathrm{~g}=40,275 \mathrm{~kg}$
11. Divide 420 into 7 equal parts: $420 \div 7=60$. 3 of these parts are dresses, i.e. $3 \times 60=180$
12. $99 \mathrm{~m}=\frac{9}{10}$, so $11 \mathrm{~m}=\frac{1}{10}$. Therefore $\frac{10}{10}=10 \times \frac{1}{10}=10 \times 11=110 \mathrm{~m}$
13. Consider the possible choices from the top row:

If I choose 1 , then the options are $1,5,9$ or $1,6,8$ giving products 45 or 48 respectively.
If I choose 2 , the options are $2,4,9$ or $2,6,7$ with products 72 or 84 respectively.
If I choose 3, the options are $3,4,8$ or $3,5,7$ with products 96 or 105 .
So 105 is the maximum possible product.

1	2	$\mathbf{3}$
4	$\mathbf{5}$	6
$\mathbf{7}$	8	9

15. $\mathrm{T}_{\mathrm{n}}=3 \times n+1$
16. $\mathrm{X}_{\mathrm{n}}=4 \times n+1$
17. The first three may be blue, red and brown. Then the next one must match one of these colours
18. You can maybe take out, e.g. 10 red, then 10 brown, then 1 blue, then the next one is also blue
19. Look at the structure in the pictures!
$\mathrm{T}_{1}: 1=1 \times 1$
$\mathrm{T}_{2}: 1+3=4=2 \times 2$
$\mathrm{T}_{3}: 1+3+5=9=3 \times 3$
$\mathrm{T}_{10}: 1+3+5+7+\ldots$ to 10 numbers $=10 \times 10$ triangles
20. Look at the structure in the pictures! Count the number of triangles:
\# triangles in $\mathrm{T}_{1}=1$
\# triangles in $\mathrm{T}_{2}=1+2$
\# triangles in $\mathrm{T}_{3}=1+2+3$
$\#$ triangles in $\mathrm{T}_{10}=1+2+3+4+\ldots+9+10=(1+10) \times 10 / 2=55$
So \# matches $=55 \times 3$
21. Make a sketch of the situation!
" 2 nd from front, $4^{\text {th }}$ from back" means there are 5 rows. " 3 red from left, $5^{\text {th }}$ from right" means there are 7 learners per row. So 7 learners/row $\times 5$ rows $=35$ learners
22. Draw it! Fill in the information as you read. Re-read, bit by bit!

23. Be systematic, e.g.	32	23	43	13
	34	24	42	12
	31	21	41	14

24. Be systematic, e.g.

143, 142; 134, 132; 124, 123
413, 412; 431, 432; 421, 423
314, 312; 341, 342; 321, 324
214, 213; 241, 243; 231, 234
25. Debbie is first, Peter is second, Tom is third and Robert is fourth.

GRADE 6(1)

1. Make equal parts. Each small square is half of the next bigger square So half of half of the big square is a quarter of the big square
2. There are 8 columns, each with $2+4+6$ cubes. So $8 \times 12=96$ cubes
3. In middle row the missing number is $18-(11+6)=1$, so in right column $A=18-(1+10)=7$
4. $\frac{1}{7}=\frac{5}{35}$ and $\frac{1}{5}=\frac{7}{35}$ so $\frac{5}{35}<\frac{6}{35}<\frac{7}{35}$. Or $\left(\frac{1}{5}+\frac{1}{7}\right) \div 2=\left(\frac{7}{35}+\frac{5}{35}\right) \div 2=\frac{6}{35}$
5. Use trial and error, i.e. try each of the given answers one by one
6. Continue the patterns: $17,22,27,32,37,42,47,52, \ldots$ and $17,24,31,38,45,52, \ldots$
7. For n dice, the number of visible faces is $n \times 3+2$. So for 75 dice, $75 \times 3+2=27$
8. Imagine or draw the cube! If the side is 3 times as long, the big cube contains 27 of the small cubes. So its mass is 27 times as large!
9. $0 \times 20+3 \times 10+1 \times 5$
$1 \times 20+1 \times 10+1 \times 5$
10. $102 \div 7=14$ remainder 4 , so adding 3 , we have $105 \div 7=15$
11. | | B | C | M |
| :--- | :--- | :--- | :--- |
| In the middle row, N cannot be 2 , so N is 1 or 3 | | | |
| A | 2 | | |

B	2	N
1	D	

15. $3 \times(1+2+3)=18$
16. Vary the possibilities systematically. First note that she could not draw 1,3 or 5 games, otherwise her total would be a fraction. If she drew 6 games her total was $6 \times \frac{1}{2}=3$. If she drew 4 and won 2 her total was $2 \times 1+4 \times \frac{1}{2}=4$. If she drew 2 and won 4 her total was $4 \times 1+2 \times \frac{1}{2}=5$
17. Vary the numbers systematically and note the behaviour of the product of the numbers:
$1+17=18$ and $1 \times 17=17 \quad 6+12=18$ and $6 \times 12=72$
$2+16=18$ and $2 \times 16=32 \quad 7+11=18$ and $7 \times 11=77$
$3+15=18$ and $3 \times 15=45 \quad 8+10=18$ and $8 \times 10=80$
$4+14=18$ and $4 \times 14=56 \quad 9+9=18$ and $9 \times 9=81$
$5+13=18$ and $5 \times 13=65 \quad 10+8=18$ and $10 \times 8=80$
18. ? $=000 \Delta \Delta \Delta \Delta=0 \Delta \Delta \Delta+\frac{1}{2}(0000 \Delta \Delta)=6 \square+4 \square$ from first two balances
19. $3,3,1$ and $3,2,2$ (the sum of any two sides must be greater than the third side - why?)

20. If the numbers are x and y : $6 \times x+y=17$. So $17-y$ must be a multiple of 6 , i.e. 12 , so $y=5$
21. In each case the remainder is 2 less than the divisor. So if we add 2 to the number, it is divisible by $3,4,5$ and 9 .
$3 \times 3 \times 4 \times 5=180$ is the smallest number divisible by $3,4,5$, and 9 . So my number is 178
22. If the empty glass has a mass of g gram and milk m gram, then $g+m=370$ and $g+\frac{1}{2} m=290$.

So $\frac{1}{2} m=370-290=80$ grams, so $m=160$ grams and $g=370-160=210$ grams
23. Each number is the sum of the two numbers above it, e.g. $6=1+5,15=5+10$
24. If a bubble gum cost B cents and a chocolate costs C cents:
$B+C=90$ and $10 B+5 C=470$, so $5 B+5(B+C)=470$, so $5 B+5 \times 90=470$, so $B=4$, so $C=\mathrm{R} 0,86$
25. $1,1+3,1+3+5, \ldots=1,4,9, \ldots=1 \times 1,2 \times 2,3 \times 3, \ldots$ So Pattern 20 has 20×20 cubes

GRADE 6(F)

1. Form a mental picture!

2. List the triangles systematically - notation and a system will help!

3. Try trial and error, e.g. $8+9+10+\ldots$

Or test each of the given numbers ...
Or, if the smallest is x, then $x+(x+1)+(x+2)+\ldots+(x+6)=7 \times x+21=63$, so $x=6$
4.

5. List them systematically: $1,2,4,5,10,20,25,50,100$
6. $4002 \div 4=1000$ rem 2
7. Count equal parts!
8. $\frac{5}{6}=\frac{40}{48}$ and $\frac{7}{8}=\frac{42}{48}$, so $\frac{40}{48}<\frac{41}{48}<\frac{42}{48}$
9. Vary the numbers systematically and note the behaviour of the product of the numbers:

$$
\begin{array}{ll}
1+29=30 \text { and } 1 \times 29=29 & 9+21=30 \text { and } 9 \times 21=309 \\
2+28=30 \text { and } 2 \times 28=46 & 10+20=30 \text { and } 10 \times 20=200 \\
3+27=30 \text { and } 3 \times 27=81 & 11+19=30 \text { and } 11 \times 19=209 \\
4+26=30 \text { and } 4 \times 26=56 & 12+18=30 \text { and } 12 \times 18=216 \\
5+25=30 \text { and } 5 \times 25=104 & 13+17=30 \text { and } 13 \times 17=221 \\
6+24=30 \text { and } 6 \times 24=144 & 14+16=30 \text { and } 14 \times 16=224 \\
7+23=30 \text { and } 7 \times 23=161 & 15+\mathbf{1 5}=\mathbf{3 0} \text { and } \mathbf{1 5} \times \mathbf{1 5}=225
\end{array}
$$

$$
8+22=30 \text { and } 8 \times 22=176
$$

10. From half to full in 1 minute. So, after 59 minutes it was half-full
11. Write all the fractions as 1000 ths: $\frac{399}{1000} ; \frac{398}{1000} ; \frac{410}{1000} ; \frac{420}{1000} ; \frac{300}{1000} \cdot \frac{2}{5}=\frac{400}{1000}$, so $\frac{399}{1000}$ is closest to $\frac{2}{5}$
12. $\frac{13}{20}$ is more than $\frac{12}{20}\left(\frac{3}{5}\right)$ and less than $\frac{16}{20}\left(\frac{4}{5}\right)$, so he is on side DE
13. He still has $\frac{7}{20}$ of the distance to go, so $\frac{7}{20}$ of $25 \mathrm{~cm}=(25 \mathrm{~cm} \div 20) \times 7=8,75 \mathrm{~cm}$
14. There is a general structure here: The denominators is twice the numerator +1 , i.e. $\frac{\diamond}{2 \times \diamond+1}$

We can therefore investigate a general pattern $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \frac{6}{13}, \frac{7}{15}, \ldots$
Check with your calculator: $\frac{1}{3}=0,333 \ldots, \frac{2}{5}=0,4, \ldots$ So $\frac{1}{3}<\frac{2}{5}<\frac{3}{7}<\frac{4}{9}<\frac{5}{11}<\frac{6}{13}<\frac{7}{15}<\ldots$
Conclusion: the larger the denominator, the larger this kind of fraction, so $\frac{11}{23}$ is the largest
15. Trial and improvement: $30 \times 31=930$ is too small $\ldots . .35 \times 36=1260$ is too small $\ldots . .36 \times 37=1332$
16. Structure! $50 \times 51=2550$

\boldsymbol{P}_{1}	\boldsymbol{P}_{2}	\boldsymbol{P}_{3}	\boldsymbol{P}_{4}	\ldots	\boldsymbol{P}_{50}
1×2	2×3	3×4	4×5	\ldots	$?$

17. Make a systematic list, e.g. 3579; 3597 | 3759; 3795 | $3957 ; 3975$ | $9375 ; 9357 \mid 9537 \ldots$

Or: He has 4 choices for the first number, then 3 choices for the second, 2 for the third and 1 for the fourth. So $4 \times 3 \times$ 2×1
18. Start with 2 colors (1 and 2) and draw it:

19. $\frac{4}{6}=\frac{6}{?}$ So $?=9 \mathrm{~cm}$
20. Work systematically!
$101,111,121,131,141,151,161,171,181,191$ - this is 10
202, 212, 222, 232, 242, 252, 262, 272, 282, 292 - this is 10
$909,999,929,939,949,959,969,979,989,999$ - this is 10
So $9 \times 10=90$
21. Investigate the structure by finding a pattern in special cases:

Row number	1	2	3	4		n
Number of numbers	1	3	5	7		$2 \times n-1$

22. In question 23 you see that the last number in Row 49 is 49×49

So the first number in Row 50 is $49 \times 49+1=2402$
23. Investigate the structure by finding a pattern in special cases:

Row number	1	2	3	4		n
Last number	1	4	9	16		$n \times n$

24. You can try to find a formula for the pattern $1,3,7,13, \ldots$

But note that the middle number is the average of the first and last numbers. So $(2402+2500) / 2=2451$
25. Investigate the structure by finding a pattern in special cases:

Row number	1	2	3	4	n	
Sum	1	9	35	91		
	1 x 1	3×3	5×7	7×13		$(2 \times n-1) \times\left(n^{2}-n+1\right)$

But note that the sum is the middle number \times number od numbers - remember, the middle number is the average! So $2451 \times 99=242649$
Or you can use the Gauss method: (First + Last) \times Number of numbers $\div 2$, so $(2402+2500) \times 99 \div 2=242649$

GRADE 7(1)

1. $(5,6+5,65) \div 2=11,25 \div 2=5,625$
2. $3 \times 3-3+3=9-3+3=6+3=9$
3. nth number $=2 \times n-1$, so $83^{\text {rd }}$ number $=2 \times 83-1=165$
4. \& 5 .

5. $1+\frac{1}{1+\frac{2}{3}}=1+\frac{1}{\frac{5}{3}}=1+\frac{3}{5}$
6. We know: $\frac{\text { Sum of numbers }}{11}=8$, so Sum of numbers $=11 \times 8=88$

If the new number is x, then $\frac{88+x}{12}=11$. So $x=12 \times 11-88=44$
8. Add all together: $2 \mathrm{~A}+2 \mathrm{~B}+2 \mathrm{C}=42,2 \times(\mathrm{A}+\mathrm{B}+\mathrm{C})=42$, so $\mathrm{A}+\mathrm{B}+\mathrm{C}=21$
9. $B+A+C=21$ and $A+C=16$, so $B+16=21$
10. The smallest is $10 \times 10=100$. The largest, by guess-and-improvement is $31 \times 31=961$. Count them!
11. \# Triangles $=2 \times$ squares +2 , or $2 \times($ squares +1$)$. So Triangles $(6)=2 \times 6+2=14$
12. Triangles (60) $=2 \times 60+2=122$
13. $2 \times x+2=60$, so $x=29$
14. Make a list, varying the numbers systematically. If the digits are a, b, c and d:
abcd, abdc, acbd, acdb, adbc, adcb and similarly if the first digit is b, c, and d. So $6 \times 4=24$. Or $4 \times 3 \times 2 \times 1=24$
15. $2 \times(7+8+9)=2 \times 24$
16.

	c	c
a	12	20
b	21	D

Using a representation like this, Area $\mathrm{D}=\mathrm{b} \times \mathrm{d}$
We know $\mathrm{a} \times \mathrm{c}=12, \mathrm{~b} \times \mathrm{c}=21$, $\mathrm{a} \times \mathrm{d}=20$
Multiply them all together: $\mathrm{a}^{2} \times \mathrm{c}^{2} \times \mathrm{b} \times \mathrm{d}=12 \times 20 \times 21$
But $\mathrm{a} \times \mathrm{c}=12$, so $\mathrm{a}^{2} \times \mathrm{c}^{2}=144$, so $\mathrm{b} \times \mathrm{d}=12 \times 20 \times 21 \div 144=35=$ Area D
17. Volume $=$ area of base \times length $=7 \mathrm{~cm}^{2} \times 12 \mathrm{~cm}=84 \mathrm{~cm}^{3}$

Or, think of cutting out a rectangular prism:
Volume $=4 \times 4 \times 12-3 \times 3 \times 12=12 \times(16-9)=12 \times 7$
18. The first digit can be $2,4,6,8$. The second digit can be $0,2,4,6,8$, which gives $4 \times 5=20$ possible combinations
19. The $6^{\text {th }}$ column is given by $6 \times$ row n.

So the last number in row 80 is $6 \times 80=480$. Then row 81 is $481,482,483, \ldots$
20. $\mathrm{T}+\mathrm{F}=17+\mathrm{R}$ (Tom and Fred together had 17 more apples than Rhoda)
$\mathrm{T}=7$ and $\mathrm{R}=5$ (Tom had 7 apples. Rhoda had 5 apples)
$7+\mathrm{F}=17+5$
$7+F=22$
21. Fill in numbers in the calendar, and test each statement with the numbers.
22. We know $a+d=c+b$, so $a+b+c+d=a+d+c+b=2 \times(a+d)=52$.

So $a+d=26$, so $a+(a+8)=26$, so $a=9$
24. 3 lines from two corners divide the triangle in 4×4 sections

10 lines from two corners will divide the triangle in 11×11 sections $=121$
25. $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \ldots \times \frac{2007}{2008} \times \frac{2008}{2009}=1 \times \frac{2}{2} \times \frac{3}{3} \times \ldots \times \frac{2008}{2008} \times \frac{1}{2009}=\frac{1}{2009}$

GRADE 7(F)

1. Square total area: $(5 \mathrm{~cm}+3 \mathrm{~cm}) \times(5 \mathrm{~m}+3 \mathrm{~cm})=8 \mathrm{~cm} \times 8 \mathrm{~cm}=64 \mathrm{~cm}^{2}$

Rectangles total area: $4 \times 5 \mathrm{~cm} \times 3 \mathrm{~cm}=60 \mathrm{~cm}^{2}$
Area of small square: $64 \mathrm{~cm}^{2}-60 \mathrm{~cm}^{2}=4 \mathrm{~cm}^{2}$
2. If we had 6 loose cubes, it would have $6 \times 6=36$ faces. In the given figure, $5 \times 2=10$ faces overlap, so there are 26 visible faces, each with an area of $1 \mathrm{~cm}^{2}$
3. Average $=$ Total mass \div number of children $=(3 \times 75+6 \times 66) \mathrm{kg} \div 9=69 \mathrm{~kg}$
4. The "vertical" formula is $2 \times a+2$. Find a so that $2 \times a+2=64$

Or the "horizontal" formula is $4+2 \times(a-1)$, so find a so that $4+2 \times(a-1)=64$
5. If x is the price without VAT, then $1,14 \times x=9,46$. So $x=\mathrm{R} 8,30$, so VAT $=\mathrm{R} 1,16$
6.

8. $(2+4+6+8+\ldots+98+100)-(1+3+5+\ldots+97+99)$
$=(2-1)+(4-3)+(6-5)+\ldots+(98-97)+(100-99)$
$=1+1+1+1+\ldots 50$ times $=50$
9. If her average for the first 4 tests was 67%, we can also express it as $(67+67+67+67) \div 4$.

So $67+67+67+67+63+67=398.398 \div 6=66,33$
10. If the length of each rectangle is x, and the width is y :
$3 \times y=2 \times x$ and $x+y=15$
So $2 x+2 y=30$, so $3 y+2 y=30$, so $5 y=30$, so $y=6$, and $x=9$.
Area of 1 rectangle is $9 \times 6=54 \mathrm{~cm}^{2}$, so the area of 5 rectangles is $5 \times 54 \mathrm{~cm}^{2}$
11. Each of the 26 letters in the alphabet can be paired with itself (e.g. BB for Barry Brown) and paired with each of the other letters. Order matters - PG is different from GP! There are 26×26 combinations.
12. Test all the cases systematically: $1 \times 17=17 ; 2 \times 16=32 ; 3 \times 15=45 ; \ldots 9 \times 9=81$, then the answer repeats, because the order does not matter (e.g. $2 \times 16=16 \times 2$).
13. $\frac{8}{11}-\frac{5}{8}=\frac{9}{88}$ of tank is 135ℓ. So $\frac{1}{88}$ of tank $=135 \ell \div 9=15 \ell$. So $\frac{88}{88}$ of the tank $=88 \times \frac{1}{88}$ of the tank $=88 \times 15 \ell$
14. Volume $=15 \mathrm{~cm} \times 8 \mathrm{~cm} \times x \mathrm{~cm}=120 \mathrm{~cm}^{3}$, so $x=1$. So area is $(15 \mathrm{~cm}+2 \mathrm{~cm}) \times(8 \mathrm{~cm}+2 \mathrm{~cm})=17 \mathrm{~cm} \times 10 \mathrm{~cm}$
15. In middle row the missing number is $18-(11+6)=1$, so in right column $z=18-(1+10)=7$
16. $p \times 1 \times \frac{1}{8}=1$, so $p=8$
$q \times 1 \times 4=1$, so $q=\frac{1}{4}$
$u \times 4 \times \frac{1}{8}=1$, so $u=2$
$p \times s \times u=1$, so $8 \times s \times 2=1$, so $s=\frac{1}{16}$

p	q	r
s	1	t
u	4	$\frac{1}{8}$

$r+s=\frac{1}{2}+\frac{1}{16}=\frac{9}{16}$
17. You can draw it, or investigate numerical patterns for a triangle, square, pentagon, hexagon, etc.

Or you can reason it out: At each vertex of an n-gon there are $n-3$ diagonals because the point is connected to every other point, except to itself and to the two adjacent points (these are sides of the n-gon). So at n vertices there are $n \times(n-3)$ diagonals, counted twice. So the formula is $\mathrm{D}(n)=n \times(n-3) \div 2$, so $\mathrm{D}(8)=8 \times(8-3) \div 2$
18. $\mathrm{D}(80)=80 \times(80-3) \div 2=3080$
19. List them systematically: 799; 979; 997; 889; 898; 988
20. Investigate the structure by finding a pattern in special cases:

\# houses	1	2	3	4		n
\# matches	5	9	13	17		$4 \times n-1$

21. $4 \times n-1=225$, so $n=(225-1) \div 4=56$
22. Multiply them all together: $(a \times b) \times(b \times c) \times(c \times a)=2 \times 24 \times 3=144$

Transform: $(a \times b \times c)^{2}=12^{2}$, so $a \times b \times c=12$
$a \times b \times c=12$, and $b \times c=24$, so $a \times 24=12$, so $a=\frac{1}{2}$
$a \times b \times c=12$, and $a \times c=3$, so $3 \times b=12$, so $b=4$
$a \times b \times c=12$, and $a \times b=2$, so $2 \times c=12$, so $c=6$
23. Look for structure!
$\mathrm{T}_{50}=1+2+3+4+\ldots+49+50=(1+50)+(2+49)+\ldots+(25+26)=25 \times 51=1275$
24. Look for structure and pattern!
$\mathrm{N}_{1}=2=1 \times 1+1$
$\mathrm{N}_{2}=5=2 \times 2+1$
$\mathrm{N}_{3}=10=3 \times 3+1$
$\mathrm{N}_{4}=17=4 \times 4+1$
Test the numbers! $30 \times 30+1=901$ is the only one which fits the pattern.
25. $\frac{1}{13}<\frac{5}{61}<\frac{1}{12}$ and $\frac{1}{5}<\frac{13}{57}<\frac{1}{4}$, therefore $12,11,10,9,8,7,6$ and 5 .

