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All rational numbers can be written as a decimal expansion. Sometimes this decimal expansion terminates, 

for example 
 

 
 which can be written as      . However, sometimes the decimal expansion takes the form 

of a repeating pattern, for example 
 

  
 which can be written as             …, or simply as     ̅̅̅̅  where 

the bar indicates the repeating digits. We will refer to such repeating units as cyclic numbers. 

To begin with, let’s restrict ourselves to rational numbers of the form 
 

 
 (i.e. unit fractions) and ask the 

following question. Under what circumstances will such unit fractions terminate? Table 1 provides a 

summary of the first 40 unit fractions using bars to indicate repeating digits. 

TABLE 1:  Decimal expansions of the first 40 unit fractions  

 

 

 

 

Table 1 reveals that of the first 40 unit fractions the following have terminating decimal expansions: 
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Ignoring 
 

 
 which is a trivial case, what is it about the other denominators that results in the decimal 

expansion terminating? If we write the denominators in terms of their prime factors then an interesting 

pattern emerges: 

 

  
 ; 

 

  
 ; 

 

  
 ; 

 

  
 ; 

 

     
 ; 

 

  
 ; 

 

     
 ; 

 

  
 ; 

 

  
 ; 

 

     
 

The prime factorisation reveals that these terminating unit fractions all have denominators whose factors 

are only   and/or  . The next two unit fractions with this property are 
 

  
 and 

 

  
 which can be written in 

prime factorised form as 
 

     
 and 

 

  
 respectively. As expected these fractions result in terminating 

decimal expansions,      and          respectively. To understand the significance of our observation let 

us first consider fractions of the form 
 

  
 , 

 

   
 , 

 

    
 , 

 

     
  etc., in other words fractions where the 

denominator is a power of     It should be self-evident why fractions of this form result in a terminating 

decimal expansion. Now, any fraction whose denominator only has factors of   and/or   can readily be 

written as an equivalent fraction of the form 
 

    , from which it follows that the decimal expansion must 

terminate. By way of example: 

 

  
   

 

  
   

 

  
 

  

  
   

  

   
   

     

       
            

So this explains under what conditions fractions have terminating decimal expansions and accounts for the 

observations made from Table 1. But what other patterns does Table 1 reveal? One may perhaps notice 

that there is an interesting relationship between the expansions for 
 

 
 ; 

 

  
 ; 

 

  
 ; 

 

  
 and 

 

  
 . With the 

exception of 
 

  
 the other four fractions contain exactly the same six digits in the repeating unit, and these 

six digits seem to appear in a cyclic form, differing only in the starting point of the pattern.   

 

 
                                

 

  
                                

 

  
                                  

 

  
                                 

What a pity that 
 

  
 doesn’t fit the pattern as well! However, notice what happens when one takes the 

repeating unit of 
 

  
 and multiplies it by three:                . This of course makes sense since 

 

  
   

 

 
 . There certainly seems to be something quite interesting about the cyclic number       . With 

a bit of fiddling around one might for instance notice the following intriguing result: 
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This gives all six permutations of the cyclic number       . At this point it would be a natural question 

to think about what the result would be if we multiplied        by  . The answer to this, namely a string 

of  s, lies at the heart of why such numbers are cyclic. 

From the observed pattern in the multiples of       , it should be no surprise that the decimal 

expansions of the multiples of  
 

 
 follow the same pattern: 

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

 

 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       

At this point it should also become apparent why the product          resulted in a string of  s, since 
 

 
     and   is of course equivalent to          , i.e.    ̅. 

There is another fascinating relationship between the digits of the cyclic number       . Notice what 

happens when the first three digits of the repeating unit are added to the last three digits:         

   . Also, notice what happens when we add successive pairs of digits:            . What about 

adding the individual digits of the number        ? Clearly the answer can’t be  , which would have been 

incredibly pleasing. Even so, the answer is rather interesting since               , and if we 

add the digits of this answer we end up with      , which is rather pleasing after all! So, adding the 

digits in groups of three resulted in a string of three  s, adding the digits in groups of two resulted in a 

string of two  s, and adding the individual digits resulted, after a bit of tweaking, in a single  .  

Is this an isolated oddity or are there other numbers where this phenomenon occurs? Consulting Table 1 

reveals that after 
 

 
 the next unit fractions having cyclic decimal expansions are  

 

  
         ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

 

  
          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Let’s investigate the first of these: 

  
 

  
         ̅̅ ̅̅ ̅̅ ̅̅ ̅              

                 

                                

The result is identical to that obtained in the case of 
 

 
 . Let’s continue our investigation with 

 

  
 . We’ve 

previously ascertained that the decimal expansion for 
 

  
 is a permutation on the cyclic number       , 

but how will this particular permutation hold up under our partitioning treatment? 

  
 

  
          ̅̅ ̅̅ ̅̅ ̅̅ ̅             

                                

                                

Adding the digits in groups of three resulted in a string of three  s. Adding the digits in groups of two 

resulted in a  -digit number rather than a  -digit number. However, by adding the leading digit, a   in this 

case, to the units place of the number remaining after the leading digit has been removed, the result is a 

string of two  s. A similar treatment when adding the individual digits resulted in a single  .  

What about cyclic numbers that have a much longer cycle? Table 1 suggests that 
 

  
 , with a   -digit cycle, 

might be an interesting case to consider. We can partition the digits into equally sized groups in a number 

of ways, viz. two groups of fourteen, four groups of seven, seven groups of four, fourteen groups of two, 

or    individual digits:    
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                               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                             

                                                                    

                                                            

                                                                          

Tweaking the answers where necessary, our partitioning treatment once again produces a matching string 

of  s for each partitioning! If we try to construct a rule for this procedure, perhaps we could word it 

something like this: 

For a cyclic number partitioned into   groups of   digits, where     is the number of digits in the cycle, then 

the sum of the   groups of   digits will result in a string of    s. If, in the event of the sum containing more 

than   digits, the additional leading digits (i.e. the digits on the left of the sum) should be added to the  -digit 

number on the right of the leading digits.    

Trying to formulate such a description is an interesting exercise in itself! See if this formulation works for 

some of the other cyclic numbers in Table 1.  

A fun way of representing cyclic numbers graphically is by using a “clock face”. The clock face we are 

going to use has the numbers                   and   evenly distributed around a circle as shown in 

Figure 1. Let’s take the repeating pattern in the decimal expansion of 
 

 
 as an example, i.e. the cyclic 

number       . To represent this number on the clock face, start at   and draw a straight line to the next 

digit in the pattern, i.e.  , and keep going until you get to the last digit, i.e.  . Now complete the path by 

drawing a straight line back to the starting point so that the cycle can repeat itself. The result of this visual 

representation is the interesting shape shown in Figure 2. Since we have previously established that the 

decimal expansions of the multiples of 
 

 
 all follow the same pattern, the shape shown in Figure 2 is also 

representative of the decimal expansions of  
 

 
  

 

 
  

 

 
  

 

 
 and 

 

 
 . 

 

 

 

 

 

 

 

 

 

 

 

 

The clock face representation of the cyclic number        is aesthetically pleasing, the basis of this 

aesthetic appeal being the symmetry of the image. Is there anything particularly interesting about this 

symmetry? If one draws a line of symmetry through the shape, then one might notice that the numbers 

          have as their counterparts           respectively on the opposite side of the line of symmetry. 

And each pair,   and  ,   and  ,   and  ,   and  ,   and  , adds to  . The digit   rears its head again!  

 

 
FIGURE 1: Blank clock face 

 
 

 

FIGURE 2: Clock face for 
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What about other cyclic numbers? Is a similar symmetry revealed in their clock face representations? 

Figure 3 and Figure 4 show the clock face representations for the cyclic numbers appearing in the decimal 

expansions of 
 

  
 and 

 

  
 respectively. The line of symmetry is shown in each case. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

The cyclic pattern appearing in the decimal expansion of 
 

  
 is the same for all multiples of 

 

  
 up to 

  

  
 . In 

other words, Figure 3 is representative of the decimal expansions of 
 

  
 up to 

  

  
 . Similarly, Figure 4 is 

representative of the decimal expansions of 
 

  
 up to 

  

  
 . However, in the case of 

 

  
 and its various 

multiples, there are two different cyclic patterns in the decimal expansions. For  
 

  
  

 

  
  

 

  
  

 

  
  

  

  
 and 

  

  
 

the repeating pattern is        while for 
 

  
  

 

  
  

 

  
  

 

  
  

 

  
 and 

  

  
 the repeating pattern is       . The 

reason for the division into these two specific groups is an issue in itself, but have you noticed that each 

grouping contains three pairs of fractions whose sum equals  ? Figure 5 and Figure 6 show the clock face 

representations for the two cyclic numbers        and        respectively.    

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 3: Clock face for  

  
  

 

 

FIGURE 4: Clock face for  

  
   

 

 

FIGURE 5: Clock face for 
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FIGURE 6: Clock face for 
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The digits of the cyclic pattern can also be represented in a circle diagram. Let’s take the cyclic pattern in 

the decimal expansions of the multiples of 
 

 
 . We’ve previously seen that the multiples of 

 

 
 follow the 

same pattern, the only difference being the starting point in the cycle (Figure 7). A question that naturally 

arises relates to the significance of each fraction’s starting point in the cyclic pattern. Distributing the cyclic 

pattern evenly around a circle – and associating each digit of the cyclic pattern with the fraction that begins 

with that particular digit in its decimal expansion – reveals a number of interesting things. Firstly, note that 

the diametrically opposite fractions outside the circle add up to  . Secondly, notice that the diametrically 

opposite digits inside the circle add up to  . Finally, which of course relates to our first observation, the 

result of adding up the decimal expansion for diametrically opposite fractions is a string of  s. The digit   

once again rears its head! 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: Circle diagram for multiples of  
 
 

 
CONCLUDING COMMENTS 

Cyclic numbers stemming from the decimal expansions of certain fractions provide a fascinating context 

for mathematical exploration and investigation. The purpose of this article was not to engage too heavily 

with the theory behind cyclic numbers as this has been done extensively elsewhere through the use of the 

algorithmic process of long division, number theory, modular arithmetic, and group theory. Rather, what 

we hope we have accomplished in this article is to show how a simple idea can be developed into an ever 

expanding investigation resulting in intriguing discoveries which hopefully spark a mathematical desire to 

explore both further and deeper.      
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