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INTRODUCTION 

Dynamic geometry environments are a powerful way of engaging students in real-time mathematical 

exploration. Students are able to investigate mathematical properties through dynamic engagement by 

dragging objects and observing the effect immediately. Through this process it is possible not only to 

investigate geometric properties but to form conjectures and hypotheses relating to additional properties. 

Although it may be easy enough to establish that a conjecture is not true, we need to be a little more careful 

with establishing its veracity. Although the dynamic geometry environment can lead us to suspect that a 

conjecture is true, to verify that it is indeed true still requires a formal geometric proof. In this article we 

present a series of progressive tasks that are ideally suited to exploration in a dynamic geometry environment. 

The tasks are gradually developed through ‘what if’ question posing (Brown & Walter, 1990, 1993). Rather 

than getting students to attempt to prove various conjectures on their own (which they could of course do 

if they wanted), ‘Proofs Without Words’ (PWWs) are presented as a route to this verification process (Katz, 

Segal & Stupel, 2016; Nelsen, 2001; Sigler, Segal & Stupel, 2016). The idea is for students to engage with 

each PWW diagram, attempt to make sense of it, and then to articulate a formal geometric proof of the 

conjecture based on the PWW diagram.           

TASK 1 – EQUAL SEGMENTS 

CASE A: THE ACUTE-ANGLED TRIANGLE 

An acute-angled triangle ABC with its circumcircle and orthocenter H is given. The chords AK, BL and CM 

all pass through the point H and intersect the triangle’s sides at points D, E and F respectively. Given this 

setup note that HD = DK, HE = EL and HF = FM (Figure 1). 

 

FIGURE 1:  Equal segments created in a circle 
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Students should explore whether these pairs of line segments remain equal when the vertices of the triangle 

are moved, i.e. when the shape of the triangle is changed. For this we built a GeoGebra applet (Link 1) in 

which one can drag the triangle’s vertices and thus change the lengths of its sides and the sizes of its angles 

while keeping track of the various segment lengths. Once students have engaged with the applet and found 

that the pairs of line segments remain equal, they should be presented with the PWW shown in Figure 2 

which provides a proof of HD = DK (the proofs of HE = EL and HF = FM can be visualized in a similar 

manner). Students should use the PWW as a basis for articulating a formal geometric proof that HD = DK  

 

FIGURE 2:  PWW for HD = DK 

 

Figures 1 and 2 show the scenario for an acute-angled triangle. Would the pairs of line segments remain 

equal if the triangle was right-angled or obtuse? 

CASE B: THE RIGHT-ANGLED TRIANGLE 

The dynamic investigation shows that for a right-angle triangle, in which the altitudes meet at point A (which 

coincides with point H), we obtain a segment AK that is perpendicular to the diameter of the circle (Figure 

3). In this case it is clear that HD = DK since a line from the centre perpendicular to a chord bisects the 

chord. 

 

FIGURE 3:  Chord AK bisected by diameter BC 

 

https://www.geogebra.org/m/n63E3sAC
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CASE C: THE OBTUSE-ANGLED TRIANGLE 

For an obtuse triangle the altitudes meet at a point exterior to the circumcircle (Figure 4). In this case we 

obtain that HD = DK, LE = EH and MF = FH.  

 

FIGURE 4:  The case of the obtuse triangle 

The PWWs for HD = DK and MF = FH are shown in Figure 5a and Figure 5b respectively. The proof of 

LE = EH is similar to that of MF = FH. 

 

FIGURE 5a:  PWW for HD = DK  FIGURE 5b:  PWW for MF = FH 

As previously, students should engage with these PWWs and use them as a basis for verbalising formal 

geometric proofs. 
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TASK 2 – THE CREATION OF SIMILAR TRIANGLES AND ISOSCELES TRIANGLES 

CASE A: SIMILAR TRIANGLES 

Given a triangle ADB, a circle is drawn passing through vertices A and B such that vertex D is exterior to 

the circle. The sides AD and BD intersect the circle at points E and C respectively. Given this setup, note 

that triangles DAB and DCE are similar (Figure 6a). Students should explore this scenario using the prepared 

GeoGebra applet (Link 2) by dragging vertices B and D while keeping track of the appropriate angles. Once 

students have established that the triangles remain similar they should be presented with the PWW shown 

in Figure 6b which presents the case where points E and C are on the same arc in relation to chord AB. The 

reader can easily adjust the PWW for the cases where points E and C are on different arcs or where one of 

them coincides with the vertex (i.e. where one of the sides is a tangent to the circle). 

 

     FIGURE 6a:  Similar triangles DAB and DCE            FIGURE 6b:  PWW for  ΔDAB|||ΔDCE 

 
 

CASE B: ISOSCELES TRIANGLES 

Given triangle ADB, what would happen if the circle through vertices A and B was constructed such that 

AB was a diameter of the circle and AC was the bisector of DAB? Using the constructed GeoGebra 

applet (Link 3) one can find that in this case triangles DCE and DAB are not only similar but also isosceles 

(Figure 7). 

 

FIGURE 7:  PWW for similar isosceles triangles DCE and DAB 

 

https://www.geogebra.org/m/MkJN3jY3
https://www.geogebra.org/m/hraXruFc
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TASK 3 – INTERSECTION OF ANGLE BISECTORS IN A QUADRILATERAL 

This final task involves an exploration of the points of intersection of the four angle bisectors in a 

quadrilateral. Let A, B, C and D be the vertices of some convex quadrilateral and let the angle bisectors of 

ABCD intersect at points K, I, N and G. These four points form the vertices of a cyclic quadrilateral. The 

initial setup is illustrated in Figure 8 while a PWW is shown in Figure 9.  

 

FIGURE 8:  Cyclic quadrilateral KING 

 

 

 

FIGURE 9:  PWW for IKG + ING = 180° 

Having explored the initial setup students should be encouraged to consider the following. Does the 

property persist for concave (as opposed to convex) quadrilaterals? What would happen if ABCD were a 

square, rhombus, kite or parallelogram? These questions can be explored dynamically using the prepared 

GeoGebra applet (Link 4). 

 

 

https://www.geogebra.org/m/w8u6e929
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It is left for the reader to explore the following observations: 

 The property persists for a concave quadrilateral. In this case a crossed (i.e. self-intersecting) cyclic 

quadrilateral is obtained (Figure 10). 

 When ABCD is a square, rhombus or kite, the quadrilateral KING degenerates into a single point. 

 When ABCD is a parallelogram, the quadrilateral KING is a rectangle. 

 

FIGURE 10:  Concave quadrilateral ABCD with cyclic crossed quadrilateral KING 

CONCLUDING COMMENTS 

Dynamic geometry environments provide a wonderful opportunity for students to actively engage with 

geometric contexts. Such environments provide a dynamic way to develop visual thinking capability which 

is such an important component of mathematical problem solving. The incorporation of ‘Proofs Without 

Words’ adds an additional element by focusing students’ attention on specific components of the diagram 

en route to a formal geometric proof. 
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GEOGEBRA APPLET LINKS 

Link 1:  https://www.geogebra.org/m/n63E3sAC 

Link 2:  https://www.geogebra.org/m/MkJN3jY3  

Link 3:  https://www.geogebra.org/m/hraXruFc 

Link 4:  https://www.geogebra.org/m/w8u6e929 
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