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INTRODUCTION 

A cevian is a line segment joining a vertex of a triangle to a point on the opposite side (or its extension) as 
illustrated in Figure 1. Cevians are named after the Italian mathematician Giovanni Ceva (1647-1734) who 
is probably best known for what is generally referred to as Ceva’s theorem – the condition for three general 
cevians to be concurrent. Medians, altitudes and angle bisectors are special cases of cevians.  

 
FIGURE 1:  Triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with cevian 𝐴𝐴𝐴𝐴 of length 𝑑𝑑. 

STEWART’S THEOREM 

The length of a cevian can be determined by Stewart’s theorem. With reference to Figure 1, the cevian length 
𝑑𝑑 is given by the following formula: 

𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 = 𝑎𝑎(𝑑𝑑2 + 𝑚𝑚𝑚𝑚) 

Stewart’s theorem can readily be proved using the cosine rule. In triangles 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 we have 
respectively:  

        𝑐𝑐2 = 𝑑𝑑2 + 𝑚𝑚2 − 2𝑑𝑑𝑑𝑑 cos𝜃𝜃 … (1) 

        𝑏𝑏2 = 𝑑𝑑2 + 𝑛𝑛2 − 2𝑑𝑑𝑑𝑑 cos(180° − 𝜃𝜃) 

              = 𝑑𝑑2 + 𝑛𝑛2 + 2𝑑𝑑𝑑𝑑 cos𝜃𝜃 … (2) 

Multiplying equation (1) by 𝑛𝑛 and equation (2) by 𝑚𝑚 and then adding allows us to eliminate cos𝜃𝜃: 

        𝑐𝑐2𝑛𝑛 = 𝑑𝑑2𝑛𝑛 + 𝑚𝑚2𝑛𝑛 − 2𝑑𝑑𝑑𝑑𝑑𝑑 cos𝜃𝜃 

              𝑏𝑏2𝑚𝑚 = 𝑑𝑑2𝑚𝑚 + 𝑛𝑛2𝑚𝑚 + 2𝑑𝑑𝑑𝑑𝑑𝑑 cos𝜃𝜃 

            ∴   𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 = 𝑑𝑑2𝑚𝑚 + 𝑑𝑑2𝑛𝑛 + 𝑛𝑛2𝑚𝑚 + 𝑚𝑚2𝑛𝑛  

Factorising the expression on the right-hand side, and replacing 𝑚𝑚 + 𝑛𝑛 with 𝑎𝑎, gets us to the required result: 

          𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 = 𝑑𝑑2(𝑚𝑚 + 𝑛𝑛) +𝑚𝑚𝑚𝑚(𝑛𝑛 + 𝑚𝑚)  

         = (𝑚𝑚 + 𝑛𝑛)(𝑑𝑑2 + 𝑚𝑚𝑚𝑚)  

         = 𝑎𝑎(𝑑𝑑2 + 𝑚𝑚𝑚𝑚)  
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While Stewart’s theorem will be unfamiliar to most high school pupils, both it and its proof are readily 
accessible. The proof is in fact rather pleasing as it incorporates many aspects of high school mathematics – 
the cosine rule, trigonometric reductions, elimination, and factorisation of a four-term expression involving 
grouping. Stewart’s theorem can also be proved using Pythagoras’s theorem directly by dropping a 
perpendicular from vertex 𝐴𝐴 to base 𝐵𝐵𝐵𝐵 and writing the distances 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 in terms of this altitude. It is 
left to the interested reader to complete this proof. 

VAN AUBEL’S THEOREM FOR TRIANGLES 

Henri Van Aubel (1830-1906) taught pre-university mathematics at the Koninklijk Atheneum Antwerpen in 
Belgium. Given triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with three cevians intersecting at a common point 𝑃𝑃, as illustrated in Figure 2, 
then Van Aubel’s theorem for triangles states that: 

𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃

=
𝐴𝐴𝐴𝐴
𝐹𝐹𝐹𝐹

+
𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

 

 
FIGURE 2:  Triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with three cevians concurrent at point 𝑃𝑃. 

The proof of this interesting result is also very accessible to the high school pupil. There are two basic ideas 
we will make use of in the proof: 

• If  𝑎𝑎
𝑏𝑏

= 𝑐𝑐
𝑑𝑑

  then  𝑎𝑎
𝑏𝑏

= 𝑐𝑐
𝑑𝑑

= 𝑎𝑎 + 𝑐𝑐
𝑏𝑏 + 𝑑𝑑

= 𝑎𝑎 − 𝑐𝑐
𝑏𝑏 − 𝑑𝑑

   

This can readily be understood as follows:  

If  𝑎𝑎
𝑏𝑏

= 𝑐𝑐
𝑑𝑑

  then 𝑐𝑐 = 𝑘𝑘𝑘𝑘 and 𝑑𝑑 = 𝑘𝑘𝑘𝑘 where 𝑘𝑘 is some scalar constant. Thus: 

 𝑎𝑎 + 𝑐𝑐
𝑏𝑏 + 𝑑𝑑

= 𝑎𝑎 + 𝑘𝑘𝑘𝑘
𝑏𝑏 + 𝑘𝑘𝑘𝑘

= 𝑎𝑎(1+𝑘𝑘)
𝑏𝑏(1+𝑘𝑘)

= 𝑎𝑎
𝑏𝑏
    and  𝑎𝑎 − 𝑐𝑐

𝑏𝑏 − 𝑑𝑑
= 𝑎𝑎 − 𝑘𝑘𝑘𝑘

𝑏𝑏 − 𝑘𝑘𝑘𝑘
= 𝑎𝑎(1−𝑘𝑘)

𝑏𝑏(1−𝑘𝑘)
= 𝑎𝑎

𝑏𝑏
 

 
• The areas of triangles with equal altitudes (perpendicular heights) are in the same proportion as the 

lengths of their bases.  
 
 
 
 
 
 
 
 
 

FIGURE 3:  Triangles 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 with areas in the ratio 𝐵𝐵𝐵𝐵:𝐷𝐷𝐷𝐷. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴

=
1
2 × 𝐵𝐵𝐵𝐵 × ⊥ℎ
1
2 × 𝐷𝐷𝐷𝐷 × ⊥ℎ

= 𝐵𝐵𝐵𝐵
𝐷𝐷𝐷𝐷
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We can now prove Van Aubel’s theorem for triangles as follows: 
 

   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

�      ∴    𝐴𝐴𝐴𝐴
𝐹𝐹𝐹𝐹

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐹𝐹− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

   . . . (1) 

 

   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶

= 𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶

= 𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

�      ∴    𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶

   . . . (2) 

 
Adding equations (1) and (2) gives: 
 

   
𝐴𝐴𝐴𝐴
𝐹𝐹𝐹𝐹

+ 𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

+ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐶𝐶𝐶𝐶𝐶𝐶

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

 
 

But:   
𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐷𝐷𝐷𝐷𝐷𝐷

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐷𝐷𝐷𝐷𝐷𝐷

 

      

   ∴   𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐷𝐷𝐷𝐷𝐷𝐷

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∆𝐵𝐵𝐵𝐵𝐵𝐵

 

   ∴   𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃

= 𝐴𝐴𝐴𝐴
𝐹𝐹𝐹𝐹

+ 𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

 

 
CONCLUDING COMMENTS 

While Stewart’s theorem and Van Aubel’s theorem for triangles will both be unfamiliar to most high school 
pupils (other than those who have received special Olympiad training), both theorems are readily accessible. 
More importantly, their proofs rely only on concepts and techniques covered within the school Mathematics 
syllabus. Exploring such proofs in the classroom (with appropriate scaffolding and guidance) can expose 
pupils to interesting theorems and results beyond the confines of the school syllabus, and at the same time 
show how basic concepts and techniques learnt at school find application beyond the walls of the classroom. 
 




