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Similarity is an important and fundamental concept in mathematics. In the real world it has many practical 
applications such as land surveying and the creation of maps and building plans. Within geometry it can be 
used to prove the theorem of Pythagoras as well as several circle geometry theorems.  

The following two conditions for triangle similarity are well-known, and appear as theorems in current South 
African textbooks as well as in many high school textbooks around the world.  

Theorem 1:  If the angles of two triangles are correspondingly equal, then the corresponding sides of the 
two triangles are proportional, and the triangles are similar. 

Theorem 2:  If the corresponding sides of two triangles are proportional, then the angles of the two 
triangles are correspondingly equal, and the triangles are similar. 

Less well known is the following theorem which is not currently prescribed in the South African curriculum 
but is often very useful in problem-solving and proving results about similarity: 

Theorem 3:  If two pairs of sides of two triangles are proportional, and the correspondingly included angles 
between these pairs of sides are equal, then the two triangles are similar5,

 
6. 

Another important property of similarity that learners are perhaps not made aware of enough is that if two 
polygons X and Y are similar, then the ratios between the pairs of sides (or diagonals) of the polygon X 
equal the ratios between the corresponding pairs of sides (or diagonals) of polygon Y.  For example, if two 
parallelograms X and Y are similar, and the long side of parallelogram X is twice that of its short side, then 
that it is also true for the ratio between the long and short side of parallelogram Y.  

Specifically in the case when two triangles ABC and PQR are similar, the following ratios also hold as shown 
in Figure 1: 

  
𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

=
𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

   ;    
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

=
𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃

   ;    
𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

=
𝑄𝑄𝑄𝑄
𝑃𝑃𝑃𝑃

   

However, as shown by the measurement of the ratios in Figure 1, it is important to note that these three 
pairs of ratios are not necessarily all equal to each other. This ‘inner-side-ratio’ property of course follows 
directly from the similarity of the two triangles. For example, since triangles ABC and PQR are similar, we 

have corresponding sides in proportion. So  𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃

= 𝐵𝐵𝐵𝐵
𝑄𝑄𝑄𝑄

⇒ 𝐴𝐴𝐵𝐵
𝐵𝐵𝐵𝐵

= 𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

  etc. 

 

 

 
5 The Siyavula site gives a proof this theorem in their similarity module at: 
https://www.siyavula.com/read/maths/grade-12/euclidean-geometry/08-euclidean-geometry-05 
6 In international high school textbooks, Theorem 1 is often indicated as AAA (or simply AA since having 
two corresponding angles equal is sufficient for the two triangles to be similar), Theorem 2 as SSS, and 
Theorem 3 as SAS. 
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FIGURE 1 

This ‘inner-side-ratio’ property of triangle similarity forms the fundamental basis of trigonometry. For 
example, as shown in Figure 2, all right triangles 𝐴𝐴𝑛𝑛𝐵𝐵𝐶𝐶𝑛𝑛 with ∠𝐵𝐵 = 90°, and with say ∠𝐶𝐶𝑛𝑛 = 𝜃𝜃, are similar, 

since two corresponding angles are equal. Hence, the ratios of the sides  𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 ,  𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

  and  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

  of all right triangles 
for a given angle 𝜃𝜃 are constant, and this gives us the three basic trigonometric ratios, namely, tangent, sine 
& cosine. 

 
FIGURE 2 

Recently I idly wondered about the converse, i.e. that if the ratios  𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

= 𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

 ;  𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

= 𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃

 ;  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

= 𝑄𝑄𝑄𝑄
𝑃𝑃𝑃𝑃

  hold for two 

triangles ABC and PQR, would that necessarily also imply that the triangles are similar? Since I’d never 
before seen (or can’t remember seeing) this result mentioned anywhere in a geometry textbook, I was 
skeptical about it being true. So I decided to first test it with a dynamic sketch, which would either give me 
a counter-example or confirm its truth. 

Here are the detailed steps I used to construct a dynamic test of the converse with the aid of Sketchpad, but 
users of other dynamic geometry software packages should easily be able to duplicate the steps. 
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Step 1:  Construct a dynamic ∆𝐴𝐴𝐴𝐴𝐴𝐴 and a dynamic line segment 𝑄𝑄𝑄𝑄. 

Step 2:  Measure the ratios 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 and 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 . 

Step 3:  Mark ratio 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 as a ‘Scale Factor’, and mark 𝑄𝑄 as a ‘Center’, then ‘Dilate’ the point 𝑅𝑅 from 𝑄𝑄 as centre 

with the marked ratio 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 . With 𝑄𝑄 as centre draw a circle with radius 𝑄𝑄𝑄𝑄′ where 𝑅𝑅′ is the image of 
the preceding dilation7.  

Step 4:  Mark ratio 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 as a ‘Scale Factor’, and mark 𝑅𝑅 as a ‘Center’, then ‘Dilate’ the point 𝑄𝑄 from 𝑅𝑅 as centre 

with the marked ratio 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 . With 𝑅𝑅 as centre draw a circle with radius 𝑄𝑄′𝑅𝑅 where 𝑄𝑄′ is the image of 
the preceding dilation.  

Step 5:  Construct the intersection of the two circles, and label one of the intersections as 𝑃𝑃. (We ignore 
the other intersection, say 𝑃𝑃′, since ∆𝑃𝑃′𝑄𝑄𝑄𝑄 is congruent to ∆𝑃𝑃𝑃𝑃𝑃𝑃). 

The completed construction is shown in Figure 3 (only part of the circle with centre 𝑅𝑅 is shown). The reader 
is now invited to explore a dynamic sketch of this construction at:  
http://dynamicmathematicslearning.com/forgotten-similarity-theorem.html 

 
FIGURE 3 

Clearly ∆𝑃𝑃𝑃𝑃𝑃𝑃 has been constructed so that  𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

  and  𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

 , but as shown in the figure, the 

measurements of two corresponding angles are equal, and hence ∆𝑃𝑃𝑃𝑃𝑃𝑃 is similar to ∆𝐴𝐴𝐴𝐴𝐴𝐴; in other words, 
it is a condition for similarity, and a theorem! The reader is invited to test the veracity of this conclusion by 
dragging the dynamic sketch at the URL given above. 

 

 

 

 
7 A dilation is a transformation that enlarges or reduces the size of a figure or a length by a fixed scale factor. 



Page 19 
 

Learning and Teaching Mathematics, No. 33, 2022, pp. 16-19 
 

We can now formulate the theorem more precisely as follows: 

THEOREM:  

If for two triangles 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑃𝑃 any two pairs of ratios hold from the following three pairs of 

corresponding ratios,  𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

= 𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

 ,  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

= 𝑄𝑄𝑄𝑄
𝑃𝑃𝑃𝑃

  and  𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

= 𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃

 , then ∆𝐴𝐴𝐴𝐴𝐴𝐴|||∆𝑃𝑃𝑃𝑃𝑃𝑃. 

The proof follows from the construction and is quite straight forward. 

PROOF:  

Assume that for the two triangles 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑃𝑃 the following two ratios hold: 

  (1)  𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

= 𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

  and 

  (2)  𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

= 𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃

   

Dividing ratio (1) by ratio (2) gives: 

  
𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

×
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

=
𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

×
𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃

  ⇒   
𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

=
𝑃𝑃𝑃𝑃
𝑄𝑄𝑄𝑄

  ⇒   
𝑄𝑄𝑄𝑄
𝐵𝐵𝐵𝐵

=
𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

   

But from ratios (1) and (2) we respectively have the following: 

  
𝑄𝑄𝑄𝑄
𝐵𝐵𝐵𝐵

=
𝑃𝑃𝑃𝑃
𝐴𝐴𝐵𝐵

   and   
𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

=
𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

   

Hence, the corresponding sides of the two triangles are in proportion, and from Theorem 2 it follows that 
∆𝐴𝐴𝐴𝐴𝐴𝐴|||∆𝑃𝑃𝑃𝑃𝑃𝑃. In the same way for the selection of any two of the other possible pairs of ratios, it can be 
shown that the sides of the two triangles would be proportional. This then completes the proof. 

CONCLUDING REMARK 

The result in this paper can be used as the basis of an investigation for high school learners to explore and 
consolidate a deeper understanding of triangle similarity. 

Since this triangle similarity condition (and theorem) is so easy to prove, it seems unlikely that it is original. 
More likely is that it has been forgotten over time. It is clearly not well-known, and it seems surprising that 
it does not appear in any of the geometry textbooks available to me. 

 




