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Introduction

In teaching a general course on mathematics for
prospective teachers,' | have found the theoretical
distinction between conceptual knowledge and
procedural knowledge (Hiebert & Lefevre, 1986) a
useful focus for teaching practice. The constructs
provide a scaffold for the learning of mathematics
by the students and for thinking about the teaching
of mathematics in the school environment. These
theoretical insights uncover in part the processes
for acquiring knowledge and provide a tool for
addressing problematic areas of learning. This
distinction enables me the lecturer to analyse my
teaching and the student to analyse their own
learning and teaching, thereby contributing to the
knowledge required for teaching.

While revisiting the much quoted work by
Hiebert & Lefevre (1986), for the purpose of
deepening my understanding of conceptual
knowledge, | was struck by the complexity of the
constructs and therefore determined to address the
view of algorithms as “just procedural”, or the
view that the understanding of concepts in the
foundation phase must precede any scaffolding by
procedures.?

Hiebert and Lefevre (1986), following on the
tradition of Scheffler (1965) and others, identified
two kinds of knowledge, conceptual knowledge
and procedural knowledge, that could be identified
as distinct, but which were related in complex
ways. The equivalent terms relational and
instrumental understanding were used by Skemp
(1976) to describe the similar theoretically distinct
though practically linked constructs. He describes
relational understanding as the ability to deduce
specific rules and procedures from more general
mathematical relations. Instrumental understanding
describes the ability to apply a rule to the solution
of a problem without understanding how it works.
Subsequent to this, Kilpatrick, Swafford, and

! The students in this course have a varied mathematical background,
some have mathematics up to grade 9, but may not have “passed” the
subject beyond Grade 7.
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Findell (2001) included conceptual understanding
and procedural fluency, similar in essence to the
terms used by Hiebert and Lefevres (1986) as
being two of five strands necessary for
mathematical proficiency.?

While most mathematics educators would agree
on both aspects of knowledge acquisition being
important the “chicken and egg” debate about
conceptual and procedural knowledge continues.
Some reform movements, for example a Western
Cape Departmental initiative from the late 1980s
and early "90s discouraged teachers from teaching
procedures and claimed that with sound conceptual
understanding children would develop their own
algorithms (James, 1995). Lack of insight into the
pedagogical theories underpinning the reform
movement caused confusion even among
experienced teachers (op. cit.). Certainly the
approach that encourages the development of own
algorithms based on conceptual understanding has
value and elicits varied responses, often insightful,
from learners who have grasped the concept
(Lampert, 2001; Ball, Lubienski & Mewborn,
2001). This is in some cases the logical starting
point for learning the more compacted algorithms.
There is also evidence that a poor understanding on
the part of teachers regarding the constructivist
approach has led to learners having neither
conceptual nor procedural knowledge (Schollar,
2004). The notion that there are stages in
mathematical development and that learners
typically go through a procedurally oriented phase
before they can effectively integrate their
conceptual knowledge is put forward by Davis,
Gray, Simpson, Tall and Thomas (2000), who
focus on high school mathematics.

In this paper | revisit the theoretical distinction
and complex relationship between these two

® Three additional strands: strategic competence, adaptive reasoning,
and productive disposition complement the above two constructs.
Strategic competence is described as the “ability to formulate,
represent and solve mathematical problems”, while adaptive
reasoning is described as “the capacity for logical thought, reflection,
explanation and justification”. Productive disposition refers to the
“habitual inclination to see mathematics as sensible, useful, and
worthwhile, coupled with a belief in diligence and one’s own
efficacy”.
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aspects of knowledge. | apply this distinction to the
topic of number bases in a teacher education
course. The complexity of the relationship raises
some questions from both a theoretical and a
practical perspective.

Number bases

The topic number bases is offered to all students in
their second year of teacher education at the
University of the Witwatersrand. The purpose for
including working with different number bases in
the course is so that students can experience
learning a “new” number system and thereby
reflect on the learning of our base-ten number
system, which they learnt 12 years ago, and which
they will be teaching in two to three years time.
Two of the tasks expected of the students is
converting between different bases and performing
the basic operations of addition and subtraction.
When teaching adding and subtracting using
different bases the focus is initially on
understanding the concept of place value and base.
For example a base 5 number system would have
groupings of five, as shown in Figure 1. The
number system would be arranged according to
place values* based on powers of five as shown in
Figure 2.

make clear the theoretical distinctions made by
Hiebert and Lefevre (1986), which inform my use
of the terms conceptual knowledge and procedural
knowledge, and show the complex relationship
between them.

Conceptual knowledge and procedural
knowledge

According to Hiebert and Lefevre (1986: 4)
conceptual knowledge is achieved in two ways: by
“the construction of relationships between pieces
of information” or by the “creation of relationships
between existing knowledge and new information
that is just entering the system”. An example of
these two ways is given in Figure 3.

Hiebert and Lefevre make a secondary
distinction between what they call primary level
relationships and what they call the reflective level.
The primary level refers to pieces of knowledge
that are at the same level of abstraction. The
reflective level refers to a higher level of
abstraction from two pieces of knowledge that are
initially conceived as separate pieces of
knowledge. An example of working with different
number bases is given in Figure 4.

Hiebert and Lefevre (1986) distinguish
conceptual knowledge from procedural knowledge
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Figure 1. Grouping in Base 5

The focus moves from conceptual knowledge in
Figure 1 to the procedural knowledge evident in
Figure 2 and then to a focus on the acquisition of
procedural knowledge, which includes the standard
addition and subtraction algorithms. Before
elaborating further on this topic, and discussing
student responses to the tasks required of them |

Figure 2. Place value table

by saying that conceptual knowledge is identified
by relationships between pieces of knowledge
where-as procedural knowledge is identified as
having a sequential nature.
For Hiebert and Lefevre procedural knowledge
includes:
e knowing the formal language, or the *“symbol
representation system”,

A student understands the relationship
between place value and the procedure
(algorithm) she learnt for doing multi-digit
subtraction (two pieces of information are
connected).

A student connects the learning of
addition in base 5 to addition in base 10
(new information is connected to existing
knowledge)

Figure 3. Conceptual knowledge: two ways of building knowledge relationships
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Primary level

When learners are first confronted with
a number system with a different base,
for example base 5, two facts may be
presented to them, one is that the
primary grouping is five, and the second
is that they are only working with the
symbols 1, 2, 3, 4 and zero. When
drawing a number line in base 5, these
two bits of knowledge, the grouping of
five (cardinal value) and the use of the
symbols 1-4 and 0 to show the ordinal
value are connected. This connection is
made at a primary level where two
pieces of information of equivalent
conceptual density are connected.

Reflective level

At a reflective level the student, after
grappling with different bases, base 5,
base 2, the hexadecimal system, may
understand that the principles of working
in any base are the same.! The reflective
level refers to a higher level of abstraction,
which incorporates the essential principles
connecting pieces of information initially
conceived as separate.

Figure 4.

¢ knowing algorithms and rules for completing
tasks and procedures, and
e knowing strategies for solving problems.

Conceptual knowledge: two levels of relationship, primary and reflective.

Step 7: Trade 5 (groups of 5) for 1 group of 25 in
the 5%’s column,

Step 8: Write left over 3 (groups of 5s) in the 5s
column. And so on...

Polya (1963), Mason,

3 2 T 0 ; - Burton and Stacey (1982)
5 S S 5 Steplid+3=7 and others have very
1 i é'\ N Step 2: Decompose 7 into 5 +2 useful problem solving
) . strategies which fall into

¥ 2 4 3 / Step 3: Trade 5 units for 1 group of 5. the procedural knowledge
1| 2 3 2‘(_;-Step 4: Write 2 in the units column category as defined by
7 8 7 And so on ... Hiebert and  Lefevre

(5+2) | (5+3) | (5+2) (1986). In the textbook
series Discovering

Figure 5. Standard addition algorithm

In Figure 5, the standard steps are followed to
solve a routine problem. If the base changes, the
necessary conceptual adjustments are made but the
procedure, a predetermined set of steps, remains
the same. Each of the steps is based on an
important mathematical concept. At first addition
in a different base is a bit confusing. The automatic
response to the algorithm, and the fluency with
which students execute this algorithm in base ten,
is thwarted. The steps on reflection are the same.

This procedure continues

Step 5 (Back to Step 1): Add the groups of five in
the 5’s column. Write the number of groups of
5inrow6.3+4+1=8

Step 6: Decompose 8 into 5 (groups of 5) and 3
(groups of 5)

or no knowledge of exponents.

Advanced Algebra (Key

Curriculum Press, 2004),
the section on matrices gives the student six steps
to follow, which form the basis of an algorithm, for
the related problems. These strategies, though
underpinned by conceptual understanding, fall into
the category procedural knowledge.

It should be clear from the above discussion
that conceptual knowledge is intricately linked
with procedures and algorithms. In fact, knowledge
of procedures is nested in conceptual knowledge.
In addition to the procedural fluency required in
the above examples, understanding the many
concepts embedded in the above procedures
enables the student to use different methods, to
remember the procedures more easily, and most
importantly, to know whether the procedure had
elicited a correct answer (Kilpatrick et al., 2001).
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Application of the theory

The conceptual knowledge/procedural knowledge
distinction has been a useful construct enabling the
students to reflect on their learning and to observe
the nuances of teaching practices in the classroom.
What happens on the part of the students who are
trying to grasp the concept of working in a
different base is an interesting question. It is not
clear when individual students are working
procedurally whether they are fully cognoscente of
the link between place value and the base in which
they are working. However, some are able to solve
these problems using different strategies -
according to this evidence they have what
Kilpatrick et al. term conceptual understanding.
Other students focus on how to follow the
procedure, in this case an addition or subtraction
algorithm, with the conceptual focus taking back
stage, and succeed in finding a solution to the
problem. At the other end of the spectrum there are
students who focus primarily on “how to” and for
whom the conceptual links to the procedure remain
elusive. This group differs from the previous group
in that their conceptual knowledge is not back
grounded; it is not apparent. These students might
be able to apply the procedure to similar problems
but change the context (in this case the number
base) and they have to relearn the procedure. The
first group gets straight to the concept, and can also
work fluently with the procedure, but this is the
group that has had access to mathematical
knowledge and is able to process mathematically.
The second group is slower at getting to the
flexible understanding afforded by a grasp of the
concept, which they only reach through the
application of the procedures in a number of
examples. An integration of the procedure with the
concept appears to be the strongest approach with
the procedure supplying the scaffolding for the
concept and the concept underpinning the
procedure. However, for the third group the links
from the conceptual to the procedural and vice
versa need to be made much more explicit.

On reflection staying at the iconic level with
counters or dots on the board for an extended
period is counter-productive, although this strategy
does help to decompress the algorithm (Ball and
Bass, 2000). In fact the algorithm incorporating
the concept of place value and base becomes the
stepping stone for conceptual understanding. The
algorithm provided intellectual advantage beyond
the first principles, in the same way that a front-
end loader has mechanical advantage over a spade.
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The issues

While | have found the distinction between
conceptual and procedural knowledge useful, the
pedagogical implications are far from clear. The
foregoing discussion indicates that the following
three issues are central to promoting a closer
relationship between the procedural and the
conceptual.

Conceptual first or procedural first

A foundation phase teacher educator using “good
constructivist methodology” may say categorically
that teaching the concept must come first and
thereafter children are able to invent their own
algorithms. In this case the executing of standard
algorithms is perceived as indicating a lack of
conceptual understanding and is aligned with rote
learning, whereas the use of self-generated
algorithms is perceived as conceptually rich. The
view that the understanding of concepts before the
learning of procedures makes some sense at a
foundation phase level, though the research done
by Rittleston-Johnson and Siegler (1998) indicates
that even at  foundation phase the
conceptual/procedural distinction has a complex,
sometimes iterative relationship.

Rittleston-Johnson and Siegler (1998: 109),
after an extensive analysis and review of the
literature on the relation between conceptual and
procedural knowledge, conclude that there is a
positive correlation between children’s
understanding of mathematical concepts and their
ability to execute procedures. However, on the
issue of “concepts preceding procedures” and
“procedures preceding concepts” it is apparent that
in some domains conceptual understanding
precedes procedural competence, as for example in
fraction addition.

The procedure to follow is to find a common
denominator, then convert to equivalent fractions,
then add ...

In other domains the order is reversed, for
example counting. Children learn to count through
nursery rhymes and to recognise the symbols
before they develop the understanding of cardinal
value. In still other domains, for example multi-
digit addition and subtraction, the order of
acquisition is variable (Rittleston-Johnson and
Siegler, 1998: 106). The general principles, which
predict which come first, depend on timing and
frequency of exposure. The more likely relation
between conceptual and procedural knowledge,
they concede, is an iterative one. However, for that
to be tested there are a number of prerequisites that
have to be put in place, one of which is careful task
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analyses to identify the concepts that underlie a
particular procedure.

Procedural means rote

Rote learning is defined as learning that is habitual
repetition and devoid of conceptual understanding.
The implication is that rote learning does not create
a building block on which knowledge can be built,
and does not provide a skill or knowledge that can
be connected with any other skill or knowledge.
The view that the executing of standard algorithms
is devoid of conceptual understanding and
therefore is aligned with rote learning is
questionable. In this regard, the work of Rittleston-
Johnson and Siegler (1998) indicates that learning
is a complex process in which the conceptual
understanding underpinning the skill and the
scaffolding function of the procedure both play a
part in establishing proficiency.

The undervaluing of algorithms
The conflation of algorithms and procedures is
another under-theorised area. The fluent execution
of algorithms represents an aspect of procedural
fluency. But algorithms in themselves cannot be
said to be devoid of mathematical concepts. More
to the point is that they represent compressed
conceptual understanding; that is mathematical
concepts that have been developed to a high level

The algorithm for converting between bases
taught to engineering and computer science
students seems on first encounter to be “pure
magic”. The answer arrives and as long as you
know which end to begin recording you get it
correct. The algorithm is on the left of Figure 6.
The explanation and conceptual unpacking is on
the right.

On first encounter the links to the place value
concepts appear so compressed as to disappear into
a black hole. But on analysis just so clever! In fact
my students’ response on seeing this was, “Why
didn’t you teach us that way?” My answer on
reflection was, “Because you are teachers you must
know the concepts underpinning the abstract
procedures”. In fact some students did try this
algorithm for conversions and made errors through
not fully grasping the conceptual features inherent
in this algorithm. But once understood this
algorithm is the quickest method of converting
between bases and circumvents going back to the
basic conceptual building blocks each time. The
counters and dots on the board support conceptual
understanding at an iconic level. However, this
attempt at scaffolding becomes very clumsy.
Algorithms perform the function of an efficient
technology, which free up byte space in the brain
for focusing on the conceptual relationships.

Convert 39,5 to Base 2

Figure 6. Converting Base 10 to Base 2

of abstraction. Interesting research on the effective
use of algorithms by students is the subject of a
paper by Meira Hockman (2005). The answer at
any level to the question of teaching algorithms
and procedures is to analyse the concepts
underpinning the component parts and thereby
enable more complex mathematical thinking.

2 39
2 19 rem |1 >~
2 9 rem |1 \\
2 (4 |rem |1 \
2 2 rem |O

1 rem |0
Answer 39,0-100111,

2° 24 23 22 2t | 2°
1 1 1

19{ groups o%\g Wit|’\ 1/over
9 broups of 4

With ;\(group of 2 over

4Igroups of 8 w\\h i\group of 4 over

2Igroups of 16 w}\h 0 groups of 8 over

1' group of 32 with\O groups of 16 over

Conclusion

Kilpatrick et al. circumvent a dichotomy between
the two strands by saying that “(i)n the domain of
number, procedural fluency is especially needed to
support conceptual understanding of place
value...” (2001: 121). Algorithms are regarded by
them as carefully developed procedures that are
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powerful and that form concepts in themselves.
Hiebert and Lefevre (1986) conclude that it is the
relationships between conceptual and procedural
knowledge “that hold(s) the key” to improved
mathematical understanding:
. although it is possible to consider

procedures without concepts, it is not so

easy to imagine conceptual knowledge

that is not linked with some procedures.

This is due, in part, to the fact that

procedures translate conceptual

knowledge into something observable.

Without procedures to access and act on

the knowledge we would not know it was

there. (1986: 9)
My teaching focus has generally been on
conceptual knowledge, without the procedural
scaffolding. In some cases students have insisted
on being told “how to” find a solution to a
problem, circumventing the particular concept
required to understand the problem. The students
might be able to apply the procedure to similar
problems but when the concept is changed which
in this case could be changing from base 5 to base
2, they are once more confronted with the need for
understanding the concept. However, in some
cases, algorithms support conceptual under-
standing and at a more complex level form the
building blocks to understand the concepts. It is
my pragmatic view in the design of this course that
different aspects of the debate apply differently to
particular mathematical concepts, to different
stages of mathematical development and to
different learning styles. | am also convinced that
prospective teachers’ access to these constructs and
the related research allows them to make informed
choices as to when to focus on different aspects of
mathematical proficiency (Kilpatrick et al., 2001).

However, the warning inherent in the
theoretical analyses mentioned above is that it is
not always possible to distinguish concepts from
procedures because understanding and doing are
connected in complex ways. Brodie (2004: 72-73)
elaborates on the complex relationship between
mathematical knowledge, practices and
mathematical teaching practices. For the purposes
of this course, Maths Concepts in Teaching, the
distinction between conceptual knowledge and
procedural knowledge performs a scaffolding
function which is sufficiently clear to be
cognitively accessible to the students and provides
a starting point for a careful conceptual analysis of
what concepts and skills underpin important
mathematical ideas. The scaffolding function also
enables the detection of students who rely solely
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on procedural knowledge in some aspect of
mathematics, for example multi-digit
multiplication, and for whom a deeper conceptual
understanding is necessary. Further conceptual
analysis of mathematical topics that includes not
only the concepts and the skills required by
students, but includes the conceptual and historical
evolution of specific mathematics topics is the
focus of further research (Long, in process).
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