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Introduction 
In teaching a general course on mathematics for 
prospective teachers,1 I have found the theoretical 
distinction between conceptual knowledge and 
procedural knowledge (Hiebert & Lefevre, 1986) a 
useful focus for teaching practice. The constructs 
provide a scaffold for the learning of mathematics 
by the students and for thinking about the teaching 
of mathematics in the school environment. These 
theoretical insights uncover in part the processes 
for acquiring knowledge and provide a tool for 
addressing problematic areas of learning. This 
distinction enables me the lecturer to analyse my 
teaching and the student to analyse their own 
learning and teaching, thereby contributing to the 
knowledge required for teaching.  

While revisiting the much quoted work by 
Hiebert & Lefevre (1986), for the purpose of 
deepening my understanding of conceptual 
knowledge, I was struck by the complexity of the 
constructs and therefore determined to address the 
view of algorithms as “just procedural”, or the 
view that the understanding of concepts in the 
foundation phase must precede any scaffolding by 
procedures.2 

Hiebert and Lefevre (1986), following on the 
tradition of Scheffler (1965) and others, identified 
two kinds of knowledge, conceptual knowledge 
and procedural knowledge, that could be identified 
as distinct, but which were related in complex 
ways. The equivalent terms relational and 
instrumental understanding were used by Skemp 
(1976) to describe the similar theoretically distinct 
though practically linked constructs. He describes 
relational understanding as the ability to deduce 
specific rules and procedures from more general 
mathematical relations. Instrumental understanding 
describes the ability to apply a rule to the solution 
of a problem without understanding how it works. 
Subsequent to this, Kilpatrick, Swafford, and 

                                                      

                                                     

1 The students in this course have a varied mathematical background, 
some have mathematics up to grade 9, but may not have “passed” the 
subject beyond Grade 7. 
 
2 Informal discussions with colleagues. 

Findell (2001) included conceptual understanding 
and procedural fluency, similar in essence to the 
terms used by Hiebert and Lefevres (1986) as 
being two of five strands necessary for 
mathematical proficiency.3 

While most mathematics educators would agree 
on both aspects of knowledge acquisition being 
important the “chicken and egg” debate about 
conceptual and procedural knowledge continues. 
Some reform movements, for example a Western 
Cape Departmental initiative from the late 1980s 
and early ’90s discouraged teachers from teaching 
procedures and claimed that with sound conceptual 
understanding children would develop their own 
algorithms (James, 1995).  Lack of insight into the 
pedagogical theories underpinning the reform 
movement caused confusion even among 
experienced teachers (op. cit.). Certainly the 
approach that encourages the development of own 
algorithms based on conceptual understanding has 
value and elicits varied responses, often insightful, 
from learners who have grasped the concept 
(Lampert, 2001; Ball, Lubienski & Mewborn, 
2001). This is in some cases the logical starting 
point for learning the more compacted algorithms. 
There is also evidence that a poor understanding on 
the part of teachers regarding the constructivist 
approach has led to learners having neither 
conceptual nor procedural knowledge (Schollar, 
2004). The notion that there are stages in 
mathematical development and that learners 
typically go through a procedurally oriented phase 
before they can effectively integrate their 
conceptual knowledge is put forward by Davis, 
Gray, Simpson, Tall and Thomas (2000), who 
focus on high school mathematics. 

In this paper I revisit the theoretical distinction 
and complex relationship between these two 

 
3 Three additional strands: strategic competence, adaptive reasoning, 
and productive disposition complement the above two constructs.  
Strategic competence is described as the “ability to formulate, 
represent and solve mathematical problems”, while adaptive 
reasoning is described as “the capacity for logical thought, reflection, 
explanation and justification”. Productive disposition refers to the 
“habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own 
efficacy”.  
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aspects of knowledge. I apply this distinction to the 
topic of number bases in a teacher education 
course. The complexity of the relationship raises 
some questions from both a theoretical and a 
practical perspective.  
 
Number bases 
The topic number bases is offered to all students in 
their second year of teacher education at the 
University of the Witwatersrand. The purpose for 
including working with different number bases in 
the course is so that students can experience 
learning a “new” number system and thereby 
reflect on the learning of our base-ten number 
system, which they learnt 12 years ago, and which 
they will be teaching in two to three years time. 
Two of the tasks expected of the students is 
converting between different bases and performing 
the basic operations of addition and subtraction. 
When teaching adding and subtracting using 
different bases the focus is initially on 
understanding the concept of place value and base. 
For example a base 5 number system would have 
groupings of five, as shown in Figure 1. The 
number system would be arranged according to 
place values4 based on powers of five as shown in 
Figure 2. 

 
The focus moves from conceptual knowledge in 

Figure 1 to the procedural knowledge evident in 
Figure 2 and then to a focus on the acquisition of 
procedural knowledge, which includes the standard 
addition and subtraction algorithms. Before 
elaborating further on this topic, and discussing 
student responses to the tasks required of them I 

make clear the theoretical distinctions made by 
Hiebert and Lefevre (1986), which inform my use 
of the terms conceptual knowledge and procedural 
knowledge, and show the complex relationship 
between them. 
 
Conceptual knowledge and procedural 
knowledge 
According to Hiebert and Lefevre (1986: 4) 
conceptual knowledge is achieved in two ways: by 
“the construction of relationships between pieces 
of information” or by the “creation of relationships 
between existing knowledge and new information 
that is just entering the system”. An example of 
these two ways is given in Figure 3.  

Hiebert and Lefevre make a secondary 
distinction between what they call primary level 
relationships and what they call the reflective level. 
The primary level refers to pieces of knowledge 
that are at the same level of abstraction. The 
reflective level refers to a higher level of 
abstraction from two pieces of knowledge that are 
initially conceived as separate pieces of 
knowledge. An example of working with different 
number bases is given in Figure 4. 

Hiebert and Lefevre (1986) distinguish 
conceptual knowledge from procedural knowledge 

by saying that conceptual knowledge is identified 
by relationships between pieces of knowledge 
where-as procedural knowledge is identified as 
having a sequential nature.  

For Hiebert and Lefevre procedural knowledge 
includes: 
• knowing the formal language, or the “symbol 

representation system”, 

 
4 Different terminology is used initially to bring in students with little 

 

* * * * *   * * * * *   * * * * *     * * * * *   
* * * * *   
 
* * * * *    * * * * *                *     *     * 

1 group of 25 
2 groups of 5 
3 units  
= 1235 

Figure 1. Grouping in Base 5 
 

 

125 25 5 1 

 or   
 
53 

 
52 

 
51 

 
50 

Figure 2. Place value table 

 

A student understands the relationship 
between place value and the procedure 
(algorithm) she learnt for doing multi-digit 
subtraction (two pieces of information are 
connected). 
 

A student connects the learning of 
addition in base 5 to addition in base 10 
(new information is connected to existing 
knowledge) 

 
Figure 3. Conceptual knowledge: two ways of building knowledge relationships 
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• knowing algorithms and rules for completing 
tasks and procedures, and 

• knowing strategies for solving problems. 
 

In Figure 5, the standard steps are followed to 
solve a routine problem. If the base changes, the 
necessary conceptual adjustments are made but the 
procedure, a predetermined set of steps, remains 
the same. Each of the steps is based on an 
important mathematical concept. At first addition 
in a different base is a bit confusing. The automatic 
response to the algorithm, and the fluency with 
which students execute this algorithm in base ten, 
is thwarted. The steps on reflection are the same. 
 
This procedure continues 
Step 5 (Back to Step 1): Add the groups of five in 

the 5’s column. Write the number of groups of 
5 in row 6. 3 + 4 + 1 = 8 

Step 6: Decompose 8 into 5 (groups of 5) and 3 
(groups of 5)  

                                                                                    
or no knowledge of exponents. 

Step 7: Trade 5 (groups of 5) for 1 group of 25 in 
the 52’s column,  

Step 8: Write left over 3 (groups of 5s) in the 5s 
column. And so on… 

Polya (1963), Mason, 
Burton and Stacey (1982) 
and others have very 
useful problem solving 
strategies which fall into 
the procedural knowledge 
category as defined by 
Hiebert and Lefevre 
(1986). In the textbook 
series Discovering 
Advanced Algebra (Key 
Curriculum Press, 2004), 

the section on matrices gives the student six steps 
to follow, which form the basis of an algorithm, for 
the related problems. These strategies, though 
underpinned by conceptual understanding, fall into 
the category procedural knowledge. 

It should be clear from the above discussion 
that conceptual knowledge is intricately linked 
with procedures and algorithms. In fact, knowledge 
of procedures is nested in conceptual knowledge. 
In addition to the procedural fluency required in 
the above examples, understanding the many 
concepts embedded in the above procedures 
enables the student to use different methods, to 
remember the procedures more easily, and most 
importantly, to know whether the procedure had 
elicited a correct answer (Kilpatrick et al., 2001).  
 

 

Primary level 
When learners are first confronted with 
a number system with a different base, 
for example base 5, two facts may be 
presented to them, one is that the 
primary grouping is five, and the second 
is that they are only working with the 
symbols 1, 2, 3, 4 and zero. When 
drawing a number line in base 5, these 
two bits of knowledge, the grouping of 
five (cardinal value) and the use of the 
symbols 1-4 and 0 to show the ordinal 
value are connected. This connection is 
made at a primary level where two 
pieces of information of equivalent 
conceptual density are connected. 

Reflective level 
At a reflective level the student, after 
grappling with different bases, base 5, 
base 2, the hexadecimal system, may 
understand that the principles of working 
in any base are the same.1 The reflective 
level refers to a higher level of abstraction, 
which incorporates the essential principles 
connecting pieces of information initially 
conceived as separate. 

 
Figure 4. Conceptual knowledge: two levels of relationship, primary and reflective. 

 
53 52 51 50 

1 1 1  
 4 3 4 

+ 2 4 3 
1 2 3 2 
 7 

(5+2) 
8 

(5+3) 
7 

(5+2) 

Step 1: 4 + 3 = 7 

Step 2: Decompose 7 into 5 +2 

Step 3: Trade 5 units for 1 group of 5.

Step 4: Write 2 in the units column 

And so on … 

Figure 5. Standard addition algorithm 
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Application of the theory 
The conceptual knowledge/procedural knowledge 
distinction has been a useful construct enabling the 
students to reflect on their learning and to observe 
the nuances of teaching practices in the classroom. 
What happens on the part of the students who are 
trying to grasp the concept of working in a 
different base is an interesting question. It is not 
clear when individual students are working 
procedurally whether they are fully cognoscente of 
the link between place value and the base in which 
they are working. However, some are able to solve 
these problems using different strategies – 
according to this evidence they have what 
Kilpatrick et al. term conceptual understanding. 
Other students focus on how to follow the 
procedure, in this case an addition or subtraction 
algorithm, with the conceptual focus taking back 
stage, and succeed in finding a solution to the 
problem. At the other end of the spectrum there are 
students who focus primarily on “how to” and for 
whom the conceptual links to the procedure remain 
elusive. This group differs from the previous group 
in that their conceptual knowledge is not back 
grounded; it is not apparent. These students might 
be able to apply the procedure to similar problems 
but change the context (in this case the number 
base) and they have to relearn the procedure. The 
first group gets straight to the concept, and can also 
work fluently with the procedure, but this is the 
group that has had access to mathematical 
knowledge and is able to process mathematically. 
The second group is slower at getting to the 
flexible understanding afforded by a grasp of the 
concept, which they only reach through the 
application of the procedures in a number of 
examples. An integration of the procedure with the 
concept appears to be the strongest approach with 
the procedure supplying the scaffolding for the 
concept and the concept underpinning the 
procedure. However, for the third group the links 
from the conceptual to the procedural and vice 
versa need to be made much more explicit. 

On reflection staying at the iconic level with 
counters or dots on the board for an extended 
period is counter-productive, although this strategy 
does help to decompress the algorithm (Ball and 
Bass, 2000).   In fact the algorithm incorporating 
the concept of place value and base becomes the 
stepping stone for conceptual understanding. The 
algorithm provided intellectual advantage beyond 
the first principles, in the same way that a front-
end loader has mechanical advantage over a spade. 
 

The issues 
While I have found the distinction between 
conceptual and procedural knowledge useful, the 
pedagogical implications are far from clear. The 
foregoing discussion indicates that the following 
three issues are central to promoting a closer 
relationship between the procedural and the 
conceptual.    
 

Conceptual first or procedural first 
A foundation phase teacher educator using “good 
constructivist methodology” may say categorically 
that teaching the concept must come first and 
thereafter children are able to invent their own 
algorithms. In this case the executing of standard 
algorithms is perceived as indicating a lack of 
conceptual understanding and is aligned with rote 
learning, whereas the use of self-generated 
algorithms is perceived as conceptually rich. The 
view that the understanding of concepts before the 
learning of procedures makes some sense at a 
foundation phase level, though the research done 
by Rittleston-Johnson and Siegler (1998) indicates 
that even at foundation phase the 
conceptual/procedural distinction has a complex, 
sometimes iterative relationship.  

Rittleston-Johnson and Siegler (1998: 109), 
after an extensive analysis and review of the 
literature on the relation between conceptual and 
procedural knowledge, conclude that there is a 
positive correlation between children’s 
understanding of mathematical concepts and their 
ability to execute procedures.  However, on the 
issue of “concepts preceding procedures” and 
“procedures preceding concepts” it is apparent that 
in some domains conceptual understanding 
precedes procedural competence, as for example in 
fraction addition.  

The procedure to follow is to find a common 
denominator, then convert to equivalent fractions, 
then add … 

In other domains the order is reversed, for 
example counting. Children learn to count through 
nursery rhymes and to recognise the symbols 
before they develop the understanding of cardinal 
value. In still other domains, for example multi-
digit addition and subtraction, the order of 
acquisition is variable (Rittleston-Johnson and 
Siegler, 1998: 106). The general principles, which 
predict which come first, depend on timing and 
frequency of exposure. The more likely relation 
between conceptual and procedural knowledge, 
they concede, is an iterative one. However, for that 
to be tested there are a number of prerequisites that 
have to be put in place, one of which is careful task 
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analyses to identify the concepts that underlie a 
particular procedure.  
 

Procedural means rote 
Rote learning is defined as learning that is habitual 
repetition and devoid of conceptual understanding. 
The implication is that rote learning does not create 
a building block on which knowledge can be built, 
and does not provide a skill or knowledge that can 
be connected with any other skill or knowledge. 
The view that the executing of standard algorithms 
is devoid of conceptual understanding and 
therefore is aligned with rote learning is 
questionable. In this regard, the work of Rittleston-
Johnson and Siegler (1998) indicates that learning 
is a complex process in which the conceptual 
understanding underpinning the skill and the 
scaffolding function of the procedure both play a 
part in establishing proficiency.  
 

The undervaluing of algorithms 
The conflation of algorithms and procedures is 
another under-theorised area. The fluent execution 
of algorithms represents an aspect of procedural 
fluency. But algorithms in themselves cannot be 
said to be devoid of mathematical concepts. More 
to the point is that they represent compressed 
conceptual understanding; that is mathematical 
concepts that have been developed to a high level 

of abstraction. Interesting research on the effective 
use of algorithms by students is the subject of a 
paper by Meira Hockman (2005). The answer at 
any level to the question of teaching algorithms 
and procedures is to analyse the concepts 
underpinning the component parts and thereby 
enable more complex mathematical thinking. 

The algorithm for converting between bases 
taught to engineering and computer science 
students seems on first encounter to be “pure 
magic”. The answer arrives and as long as you 
know which end to begin recording you get it 
correct. The algorithm is on the left of Figure 6. 
The explanation and conceptual unpacking is on 
the right. 

On first encounter the links to the place value 
concepts appear so compressed as to disappear into 
a black hole. But on analysis just so clever! In fact 
my students’ response on seeing this was, “Why 
didn’t you teach us that way?” My answer on 
reflection was, “Because you are teachers you must 
know the concepts underpinning the abstract 
procedures”. In fact some students did try this 
algorithm for conversions and made errors through 
not fully grasping the conceptual features inherent 
in this algorithm. But once understood this 
algorithm is the quickest method of converting 
between bases and circumvents going back to the 
basic conceptual building blocks each time. The 
counters and dots on the board support conceptual 
understanding at an iconic level.  However, this 
attempt at scaffolding becomes very clumsy. 
Algorithms perform the function of an efficient 
technology, which free up byte space in the brain 
for focusing on the conceptual relationships.  
 

Conclusion 
Kilpatrick et al. circumvent a dichotomy between 
the two strands by saying that “(i)n the domain of 
number, procedural fluency is especially  needed to 
support conceptual understanding of place 
value…” (2001: 121). Algorithms are regarded by 
them as carefully developed procedures that are 

 
Convert 3910 to Base 2 

2 39   25 24 23 22 21 20 

2 19 rem  1 1 0 0 1 1 1 

2 9 rem 1  

2 4 rem 1 19 groups of 2 with 1 over 

2 2 rem 0 9 groups of 4 with 1 group of 2 over 

 1 rem 0 4 groups of 8 with 1 group of 4 over 

2 groups of 16 with 0 groups of 8 over Answer 3910 = 1001112  

 

 

1 group of 32 with 0 groups of 16 over 

Figure 6. Converting Base 10 to Base 2 
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powerful and that form concepts in themselves. 
Hiebert and Lefevre (1986) conclude that it is the 
relationships between conceptual and procedural 
knowledge “that hold(s) the key” to improved 
mathematical understanding: 

… although it is possible to consider 
procedures without concepts, it is not so 
easy to imagine conceptual knowledge 
that is not linked with some procedures. 
This is due, in part, to the fact that 
procedures translate conceptual 
knowledge into something observable. 
Without procedures to access and act on 
the knowledge we would not know it was 
there. (1986: 9) 

My teaching focus has generally been on 
conceptual knowledge, without the procedural 
scaffolding. In some cases students have insisted 
on being told “how to” find a solution to a 
problem, circumventing the particular concept 
required to understand the problem. The students 
might be able to apply the procedure to similar 
problems but when the concept is changed which 
in this case could be changing from base 5 to base 
2, they are once more confronted with the need for 
understanding the concept. However, in some 
cases, algorithms support conceptual under-
standing and at a more complex level form the 
building blocks to understand the concepts. It is 
my pragmatic view in the design of this course that 
different aspects of the debate apply differently to 
particular mathematical concepts, to different 
stages of mathematical development and to 
different learning styles. I am also convinced that 
prospective teachers’ access to these constructs and 
the related research allows them to make informed 
choices as to when to focus on different aspects of 
mathematical proficiency (Kilpatrick et al., 2001). 

However, the warning inherent in the 
theoretical analyses mentioned above is that it is 
not always possible to distinguish concepts from 
procedures because understanding and doing are 
connected in complex ways. Brodie (2004: 72-73) 
elaborates on the complex relationship between 
mathematical knowledge, practices and 
mathematical teaching practices. For the purposes 
of this course, Maths Concepts in Teaching, the 
distinction between conceptual knowledge and 
procedural knowledge performs a scaffolding 
function which is sufficiently clear to be 
cognitively accessible to the students and provides 
a starting point for a careful conceptual analysis of 
what concepts and skills underpin important 
mathematical ideas. The scaffolding function also 
enables the detection of students who rely solely 

on procedural knowledge in some aspect of 
mathematics, for example multi-digit 
multiplication, and for whom a deeper conceptual 
understanding is necessary. Further conceptual 
analysis of mathematical topics that includes not 
only the concepts and the skills required by 
students, but includes the conceptual and historical 
evolution of specific mathematics topics is the 
focus of further research (Long, in process).  
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“Difficulties increase 
the nearer we get to 

the goal.” 
 

Johann Wolfgang 
von Goethe 


