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Introduction

From the mid 1970s onwards in almost every issue
of the wundergraduate mathematics journals
Mathematics Magazine and College Mathematics
Journal there is at least one ‘proof without words’
(Nelsen, 1993). A proof without words can be
thought of as a ‘proof’ that makes use of visual
representations, that is, pictures or other visual
means to show a mathematical idea, equation or
theorem (Casselman, 2000). It does not contain
any words other than literal or numerical symbols
and geometrical drawings, for example. There is
debate around whether a proof without words
really qualifies as a proof. It helps the observer see
why a particular mathematical statement may be
true, and also to see how one might begin to go
about proving it true. It may also have an equation
or two, arrows or shading in order to guide the
reader in this process. In it there is a clear
emphasis on providing visual clues to the reader in
order to stimulate thinking with the eventual goal
of writing a proof. Many proofs without words in
the referred journals are directly related to the
secondary Mathematics curriculum in  South
African schools although not exclusively so.

Interpreting a proof without words requires
explanations that draw on various mathematical
ideas not necessarily evident in the proof without
words. When the reader starts to unpack and
explain the diagrams or pictures in the proof
without words, it can become a ‘proof that
explains’ as opposed to a ‘proof that proves.” More
needs to be said about the last two notions. Writing
explanations for and discussing a suitable proof
without words can present opportunities to develop
insights about and connections between different
mathematical ideas. These are also ways to
popularise proof in general in the secondary
mathematics curriculum (De Villiers, 1990;
Volmink, 1990).

References to proof appear in current South
African policy documents on school mathematics
reform at the secondary level. For example,
“competence descriptions” for learners by the end
of grade 12 include “being able to critically
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analyse and compare mathematical arguments and
proofs” and being able to “demonstrate an
understanding of proof in local axiomatic systems”
(Department of Education, 2003: 83). The question
becomes, what means are available to align
learners and teachers with these competence
descriptions? Elsewhere the document mentions
“mathematical process skills” which include
generalising, explaining, describing, observing,
inferring, specialising, justifying, representing,
refuting and predicting (ibid.: 19). As possible
visual processes these mathematical skills can
stimulate thinking about proofs and also proofs
without words. In this regard visualisation is a key
construct which will be explored in this paper. A
reference to proof also appears in the study of
series and sequences (ibid.).

The purpose of this paper is to explore an
epistemic role for visualisation with respect to
proofs without words in secondary mathematics in
the current South African education policy context.
Visualisation as process and product can be a
means to examining proofs without words by
turning them into proofs that explain. In this way
students can develop insights and explanations for
the mathematics they encounter in the secondary
curriculum. The proofs without words chosen are
those that show analytic and visual representations
of series and sequences. In the secondary
curriculum series and sequences are mainly
represented analytically. It will be shown that a
thoughtful interpretation and explanation through
visualisation of such proofs without words
connects different strands in the bureaucratically
stated secondary curriculum found in the policy
document (Department of Education, 2003). There
is more mathematics embedded and ‘unseen’ in
these proofs without words.

Visualisation as process and product

It is difficult to conceptualise a neat division
between visualisation as process and product when
we interpret a proof without words. Visualisation
as product can be thought of as the proof without
words or the final picture. On the other hand
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visualisation as process involves employing
various techniques to understand and to interpret
the proof without words. Visualisation has a
special attraction in the case of a proof without
words because the reader is drawn ‘to fill in the
words’ in order to make the theorem or statement
in the proof without words true. Literature on
visualisation sometimes refers to visualising
(Giaquinto, 1993; 1994), wvisual reasoning
(Hershkowitz, Arcavi, & Bruckheimer, 2001) or
simply visualisation (Arcavi, 2003). Many proofs
without words rely on visual means to
communicate a  mathematical statement.
Visualisation — as both the product and the process
of creation, interpretation and reflection upon
pictures and images - is gaining increased
popularity in mathematics and mathematics
education (Arcavi, 2003). What we do upon seeing
a proof without words is process a product.
Depending on the proof without words, the reader
can be drawn into “seeing the unseen and perhaps
also proving,” according to Arcavi (2003). One can
think of interpreting, creating and reflecting as
examples of visualisation as process, which can
also include scribbling notes or diagrams on paper,
or making gestures and utterances. Interestingly,
visualisation as product can include explanatory
notes that result from interpretation of and
reflection on a proof without words, in addition to
the final picture or proof without words.

In a proof without words of the infinite
geometric series

(;jz + (;)4 + (;js .= % (see Figure 1),

Arcavi (2003) argues that a proof without words is
(2) neither “without words” nor (b) “a proof.” The
reader is most likely to decode the picture through
words (a) — either mentally or aloud - and
according to Hilbert's standard for a proof, it must
be “arithmetisable” (b), otherwise it is non-existent
(Hadamard, 1954, in Arcavi, 2003). This explains
the cautious use of “visual proof” in the case of the
infinite geometric series. What is clear is the
controversy around what constitutes a proof. From
the former, we infer that what is seen — or
visualisation as process or product — might actually
be complemented by verbalisation. Hence the
notion of “without words” in proof without words
should not be understood literally.

There is continuum between process and
product interpretations of visualisation which is
illustrated using the proof without words of the
same infinite geometric series. The proof without
words presented in Figure 1 is a product of the
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proof creator’s visualisation which the reader has
to process. It provides us with cues that make our
process of visualisation easier. We may not be
instantly convinced of the result. Also, we
potentially see how a proof for the geometric series
is done. There are non-trivial bits of numerical
manipulations that the reader has to process, for
example, interpreting

(1}((1) and [1TX(1)2 as areas.
2 2 2 2

The use of areas is an example of Arcavi’s
(2003) notion of how the reader is attracted to
“seeing the unseen” or “filling in the words.” To
make the statement true we may be attracted to
look at the final picture or product.

Visualisation as process in the infinite
geometric series has its attendant problems,
namely, a particularity objection and unintended
exclusions (Giaquinto, 1993). What is the
particularity objection in visualisation as process in
the case of this infinite geometric series? We
cannot do a visualisation process of the geometric
series that goes up to infinity. We can only do a
visualisation process up to a particular number of
areas. Visualisation as process thus cannot include
every area in the infinite geometric series but it
can specify some areas. Also, in the process of
visualising the infinite geometric series there are
some areas which will be excluded from the
content of visualising. This is not to say that a
precise number of areas is visualised. There will
be numerical vagueness in the visualisation
process, but not so much vagueness that no number
of areas is excluded. For instance, we cannot
visualise 41 specific areas, meaning that there will
be “unintended exclusions” (ibid.). From the way
Figure 1 is shown we are typically unable to carry
out a visualisation process that includes exactly 41
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Figure 1. A proof without words of the
infinite geometric series
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areas. The best we can do is to visualise an
arrangement of roughly 6 such areas. There will
thus be a problem of unintended exclusions the
more we specify the number of areas. This
problem does not negate the use of visualisation as
process in this infinite geometric series. It does,
however, pull us in the direction of the final
picture or visualisation as product so that we can

hopefully conclude that the sum to infinity equals
1

3

Visualisation as process and product in the case
of the infinite geometric series can take us in the
direction of analysis. The unseen mathematics in
Figure 1 is far more than meets the eye. Seeing the
unseen mathematics depends on the reader’s
insights. By visualising the first few steps in the
process the reader gets an idea of the common
nature of each step: we divide the large unmarked
square into quarters, marks the lower left of these
quarters and leaves the other three unmarked (to be
divided into quarters in the next step). A crucial
thought becomes apparent: at each stage there is a
shading of one of the four squares. The reader has
to come to believe the theorem that the limit of the
series

3 (3 (3) -

Also, it is clear that at no particular stage of the
division of the squares do the areas of the shaded

parts of the figure add up to give % It also seems

clear that no area at the top right-hand corner is so
small that it will not eventually “fill up” the open
space. There will be unintended exclusions. One

can think of % as the least upper bound of the

sequence. The truth of the theorem can be inferred
from this, taking it as known that a monotonic
increasing function sequence bounded above
converges to its least upper bound. The arguments
presented here take us into the realm of elementary
real analysis, involving the limit of an infinite
process (Giaquinto, 1994). To get to see why the

series has a limit of % the reader’s eye has to

digest several pieces of numerical information that
are in the picture. This would entail seeing and

eventually proving that the limit of the series is%
through real analysis. On the other hand the reader
can simply see or trust that % of the area of the

outer square is being shaded.
According to Giaquinto (1994) there is insight
garnered from the picture of such an infinite series.

Looking at the picture or proof without words we
understand why the series has the sums it does.
This picture is not a proof of what the limit of the
infinite series is. Implicit in the above are
characteristic properties (Steiner, 1978, in Hanna,
1990), which will be discussed, in more detail later
on. This, however, brings us to an important
distinction between proofs that demonstrate that a
theorem or statement is true and proofs that show
why a theorem or statement is true. Visualisation as
both process and product plays a key role in
turning a proof without words into a proof that
explains. How do we distinguish a proof that
proves from a proof that explains?

Distinguishing between proofs that prove
and proofs that explain

One of Hanna’s (1983; 1990; 1998a; 1998b) major
contributions to literature on the nature of proof in
mathematics and mathematics education is a
distinction between proofs that prove and proofs
that explain. This distinction has a long and
interesting history and is stated slightly differently
at times. “Verifying” is used when proofs
demonstrate that a theorem or statement is true and
“clarifying” is used when proofs show why a
theorem or statement is true (De Villiers, 1990).
The former has to do with “convincing” or
“making certain,” while the latter has to do with
“explaining.” This distinction is quite important.
For example, the mathematician Bolzano (in
Hanna, 1990) makes a similar distinction “making
certain”  (gewissmachung) and “building a
foundation” (begriindung). “Making certain” and
“building a foundation” are synonymous with a
proof that proves or verifies and a proof that
explains or clarifies, respectively. Hanna (1990)
uses “explain” when a proof reveals, and makes
use of the mathematical ideas that motivate it and
hence refers to an “explanatory proof.” Such a
proof focuses on “building a foundation” or
clarifying, and is consonant with Volmink’s (1990)
notion of proof as a means of communication. For
example, in classrooms, teaching and explaining a
proof becomes a form of discourse in which
visualisation as process and product can lead to
insight and connections among mathematical ideas.
On the other hand, a proof that proves does not
illuminate the appearance of particular symbols,
whether literal or numerical, in a proof.

Hanna (1998a) cites mathematical induction as
the example of a proof that proves or verifies. We
have to unpack mathematical induction by firstly
examining induction and then mathematical
induction. Induction is the process of discovering
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general laws Dby the observation of and
combination of particular instances. It aims at
finding regularity and coherence behind

observations. How do we insert a mathematical
aspect to observations done via induction?
According to Polya (1945/1988) there is in
mathematics a higher authority than observation
and induction: rigorous proof. This is where
mathematical induction comes in. It is to the
mathematical aspects of mathematical induction
that we turn to next.

Pdlya (1954) lists several steps in mathematical
induction before its actual technique. These are the
inductive phase, the demonstrative phase,
examining transitions and, finally, the technique of
mathematical induction. During the inductive
phase we suspect that a particular mathematical
relationship, theorem or statement is true. Driven
by what we suspect, we formulate a conjecture
about the mathematical statement which we test for
particular cases to see if it is true. We check to see
if the conjecture is true for several cases and we
ask how we can test the conjecture more
efficiently. During the demonstrative phase we
examine whether the conjecture passes a severe
test. This is done by taking what is supposedly true
to what is incontestably true and finally
consequently true.

n® n

The statement 1+2+3+..+n= 7+E
which appears in secondary mathematics will be
considered. During the inductive phase there is an
examination of several numerical values, where we
can tabulate the results for n = 1, 2, 3, .... For
example, we would end up with a conjecture that

2
1+2+3+...+n:n—+ﬂ
2 2

Going through this exercise we end up being
certain that the statement is true. It is not difficult
to see how all these steps are about convincing and
making certain (gewissmachung).

A curious student or learner following the steps
in a proof via mathematical induction will certainly

have questions, such as why is there a % in the

n> n
statement, 1+2+3+...+n :_+E?

This question calls for a ‘proof that explains.” A
visual representation or proof without words of this
statement is shown in Figure 2.

To answer the question about the % the student

will have to use visualisation processes such as
describing and observing a triangle and blocks or
square units in order to interpret the proof
constructor’s product or proof without words.
Describing and observing can include “filling in
the words’ or verbalising and ‘seeing the unseen.’
It becomes clear that processing a visualisation of
the arithmetic (Giaquinto, 1993) in the statement is
supported geometrically. Some of the seen and
unseen mathematics is the area of a triangle with a
height of length n units and a base of length n

2
units. This area turns out to be %

The missing area to be added is% multiplied by
n, the number of n square units. These are the
shaded half squares, g It should be noted that the

proof without words is about a general theorem in
arithmetic: for all positive integers n, the sum of
the first n positive integers is a half of n? + n. The
proof without words has a particular number of
squares, meaning that in the visualisation processes
there will be unintended exclusions. A similar

is probably true.

Proving this truth would involve
testing whether the conjecture is
true. In the demonstrative phase we
increase our doubts by first,
assuming that it is supposedly true.
The conjecture is then shown to be
incontestably  true and then
consequently true. Examining the
transition from n to n + 1, is the last

reasoning to  conclude  that
2

1+2+3+...+n=n—+E is true
2 2

S1+2+3+...4n+ (n+1)

n> n

__l__
2 2

2
n—+%+ (n+1)

1+2+3+...+n

n> n 2n 2

= —+—+
2 2 2 2
n+2n+1 n+1
+
2 2
(n+1y’ . (n+1)
2 2

for all integers. To summarise, see

Box 1. The transition from supposedly true to incontestably

Box 1. true, to consequently true, for all positive integers
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2
JE T
2 2

n

Figure 2. Visual representation or proof
without words

point was raised in the case of the infinite
geometric series. Alternately, we can find the area
of a square of side length n, halving this area (n?)

and then adding% of n blocks to yield ”2+2, to

find 1+ 2+ 3+ ...+ n. There is thus a geometrical

justification in terms of the area of a triangle that
2

explains the statement, 1+2+3+...+n = n_+g
which includes an explanation for the appearance
1
of 5.
2

There are contrasts between proofs that prove
and proofs that explain in the case of the said
mathematical statement. In the entire proof that
proves via mathematical induction there is no
translation back and forth between different
representations. Only a numerical or analytic
representation is used. In contrast, the proof that
explains uses far more mathematics with the hope
of bringing about understanding. Here there is the
possibility that the student will develop insights
depending on how his or her visualisation as
process and product interacts and unfolds. The
mathematical statement is about a general
arithmetic  theorem which is proved via
mathematical induction, for all positive integers n.
In contrast the proof that explains with its
geometric justification makes use of the area of a
particular triangle, although the height and base of
the triangle is stated as general, namely, ‘n’. More
needs to be said about proving and explaining with
respect to proofs without words.

Prove and explain

So far it is evident that visualisation as process and
product plays an important role in turning suitable
proofs without words into explanatory proofs or

proofs that explain. Central to this is seeking
characterising properties in the proofs without
words. Steiner (1978: 143) and Hanna (1990: 10) -
who cites Steiner — characterise an explanatory
proof as follows:

...an explanatory proof makes reference to a
characterising property on an entity or
structure mentioned in the theorem, such that
from the proof it is evident that the result
depends on the property. It must be evident,
that is, that if we substitute in the proof a
different object of the same domain, the
theorem collapses; more, we should be able to
see as we vary the object, how the theorem
changes in response.

For example, what characteristic properties are
entailed in proofs without words of the following
two statements?

n(n+1) n(n+1)(n+2)

14346+..+ 5 and
2
P+22+3%+ +n3:(Mj ?
5 7

Also, how do we go about finding the

characterising properties in proofs without words
that motivate, explain and compel the truths of the
statements? Much of the answer lies with Chinese
mathematicians for whom a proof consisted of
“any explanatory note, which served to convince or
to enlighten” (Siu, 1993: 346). They practiced
“proof as explanation” in ways that were very
different from Greek mathematicians' axiomatics
and deductive proofs, because these had not
reached them (Hanna, 1998b). Explanatory notes
as instances of visualisation as process and product
thus play an important role in searching for
characteristic properties.

How can we explain each of the symbols in

Figure 3, %(n+1)3 —%(n +1):W, the

mathematical statement for the sum of n triangular
numbers?

Visualisation as product in the form of a proof
without words showing the sum of n triangular
numbers is shown in Figure 3. The triangular

n(n+1)

numbers- 1, 3,6, ..., — are represented

geometrically as the cubes in the layers ty, to, t3...,
tn respectively. The cubes forming the triangular
numbers at each stage are arranged in a way where
they form three-dimensional objects, which
suggests that volume will come into play. In
uncovering the characteristic properties of this
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L=14+24-F+n=H+t60+---+1, =

1
t1+13+---+l"=6(n+l)3—(n+l)‘

nin 4+ 1)n+2)
6

NN,

NNEANEANEAN

| . min+ 13n + 2)
6 6

Figure 3. Proof without words: sum of triangular numbers (from Nelsen, 2005)

proof without words, the reader’s eye is guided by
the visualisation in the arrangement of the
triangular numbers as cubes and the equal signs
ending with the generalised pyramid of height
(n+1) units and base of area %(n + 1)? square units.

This forms a carefully assembled chain of
reasoning and qualifies as a “good mathematical
illustration” (Casselman, 2000) that entices the
reader to visualise the processes that make the
mathematical statement true.

Where does i come from? In the third

arrangement of the triangular number as cubes, in
Figure 3, one sixth of the volume of the top small
cube is shaded. A small cube on its own will
consist of 3 small pyramids having the same
height. This is what Calculus tells us, namely, the
volume of a pyramid having the same height

v=%(area of base x height).
The base, however, is halved, meaning that the
volume of the shaded part of the cube becomes

V= % (area of base x height).

This is indicated by the shaded part in the top,

small cube, which forms the first triangular
number. In the second triangular number two such
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slices are shaded. The pattern continues where
three such slices are shaded for the third triangular
number, and so on.

In the second row of the arrangement in
Figure 3, the shaded pyramids are turned upwards
to a generalised pyramid of height (n + 1), with a

halved base which is explained by the % The full
volume of a cubic arrangement of triangular

numbers of side length (n+1) is therefore (n+1)°.
In the case of summing the triangular numbers, we

are only interested in % of the volume. The extra

volumes of% of 1 cubic unit of which there will be
(n+1) have to be subtracted. This illuminates the

1 1
line =(n+1)*-=(n+1).
6( ) 6( )

Obtaining the right-hand side of the statement
NN+ +2) s 3 matter of factoring. As in the
6
previous cases the proof without words contains
unintended exclusions because it aims at drawing
the reader into seeing a generalised arithmetic
theorem. Proofs without words for the statement

2
P+2°+3%+..+nt :[@j
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entail  characteristic ~ properties that are
combinatorial and geometric in nature (see Figures
4 and 5).

Suggestion 1: combinatorial proof without
words
The combinatorial proof takes its name from the
combinations of the sum of positive integers
starting with 1 (see Figure 4). By examining the
combinatorial proof the reader can be encouraged
into visualisation processes such as ‘seeing the
unseen’ or ‘filling in the words.” On the left hand
side (Figure 4), there is the sum of the positive
integers in the first row beginning with 1 up to n.

1+2+4+2)+3+6+9+6+3)+
L NE2043N+.. 407+ 430+ 2n+n.

Non-trivial bits of algebraic manipulation will
have to be done to show that any L shape
analytically represented as

N+2n+3n+...+n*+...+3n+2n+n

sums to n(n?).
Interestingly, these bits are not visualised at all.
The L shapes sums are as follows:
1=1(1)
2+4+2=2(1+2+1)
3+6+9+6+3=3(1+2+3+2+1).
This generalises as set out in Box 2.

In the second

row, each of

maiolica by 2 N+2n+3n+..+n°+..+3n+2n+n=n(1+2+3+..+n)+nl+2+3+..+n-1)
multiplied by 2.

In the third row, :n(”(”+1)+n(n—1)j

each of the 2 2

integers in the
first  row s
multiplied by 3.
This pattern continues. The last two rows on the
left-hand side can be factorised and reduced to the
following:

Q@+2+3+ ..

Box 2.

n

+n)x(2i)

i=1
(> )x(>li). on the right hand side of
i=1 i=1
Figure 4 the combinations of numbers as indicated
are added in the following way:

which becomes

1 3 n
+12 4 2n
+13 3n
+
+|In 2n 3n . . .

=Y i +2)li+3) i+ +n)i
=iy

i=1

:(n(n +1)j2
2

Generalising for a combinatorial proof

Manipulating n(n(n+l) + n(n—l)j yields
2 2
n(n(n+1)+n(n—1))
2
(n2+n+n2—n]
:n—
2
=n(n?)
1 n
+ 2] 4 2n
+ |3 3n
+
+|n 2n 30 . . . n?

=1(1%) +2(2)* + ... + n(n)®

=30

n
i=1

Figure 4. Suggestion 1 — combinatorial proof (adapted from Pouryoussefi, 1989)

59




M Faaiz Gierdien

The previous manipulation is a deductive proof
that shows that

N+2n+3n+..+n°+...+3n+2n+n=n(n?)

The combinatorial proof without words, in fact,
uses a result from a previous proof without words
about consecutive integers that was discussed
2

earlier, namely: 1+2+3+...+n :n?Jr%

By focusing on these combinations of the
numbers, we gain a sense of the truth of the
original statement, namely:

2
1¥+2°+3°+..+n® :(n(n2+1)j

Suggestion 2: geometric proof without words
In the geometric proof without words, a focus on
the area of a square of side length compels the
truth in the original statement with some
qualification (see Figure 5). The reader’s attention
can be directed to visualising the area of a square

with a side length (1 + 2 + 3 + 4 + 5), or @

This is a particular side length meaning that the
particularity objection mentioned earlier may be

applicable. The area of the square s
2 2
(5(5+1)) and not(n(n+1)j .
2 2

This means that there are unintended exclusions in
the geometric proof without words. This does not
mean that our visualising experience cannot be in
the direction of a general arithmetical or
mathematical statement as in this case. The area
inferred in the geometric proof is not stated as an

arithmetical theorem about all positive integers
(Giaquinto, 1994) as compared to the
combinatorial proof in suggestion 1. The problem
of the unintended exclusions does not support a
negative view of the utility of visualisation
processes which are geometric in this instance. The
connection between ‘series and sequences’ and the
geometry of the areas of squares are not surprising
because we have such a connection for summing
the integers 1 + 2 + 3 + ...+ n as we saw earlier on.

Implications for teaching

The ideas discussed in this paper have implications
for what might happen in teaching. Each of the
proofs without words became proofs that explain
via visualisation as process and product. The latter
is therefore a means to align policy statements
about learners’ competence descriptions with
respect to proof. Recall that learners have to be
able to critically analyse and compare mathe-
matical arguments and proofs.

So what might the teacher do? He or she should
encourage learners to do the explaining when
poring over a proof without words. They should be
encouraged to “fill in the words’ and to try to “see
the unseen’ mathematics through visualisation.
They could do so collectively or individually.
Applicable here are visualisation processes such as
generalising, observing, inferring, representing,
predicting, describing through writing down what
is observed and verbalising collectively and
individually. Note that that these processes are in
concert with the Department of Education’s
“mathematical process skills” according to the

South  African policy document for

12 | 3 | 4 5
2 4| 6 8 10
3.6 9 12 15
4:8 @ 12 16 20
510 15 20 25

secondary mathematics (2003: 19). Learners
could record their utterances or
verbalisation on the sheet containing the
proof without words. This would be the
product of their visualisation in addition to
the proof constructor’s proof without words
which they will be interpreting and
explaining. The teacher must explicitly tell
learners that any proof without words is a
proof constructor’s final product that they
have to process. The teacher would have the
challenging task of orchestrating a
discussion that has the goal of linking
learners’ visualisation process and product
with the proof without words that they are
examining.

What is gained by learners explaining

Figure 5. Suggestion 2 — geometric proof
(adapted from Pouryoussefi,1989)
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what they see in a proof without words?
They might see how mathematical ideas in
the secondary curriculum are related
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through different representations. Who would have
thought that a proof without words of a compact
statement such as
2
1+2+3+...+n:n—+E
2 2
— on series and sequences — can be explained via
the area of a triangle, or that an analytic
representation such as
n(n+1) n(n+1)(n+2)
6
can be explained using the volume of a pyramid?
They could learn from the insights that fellow
learners present during explaining. Here the
teacher plays a critical role because he or she will
have to figure out what learners are saying in
relation to what they ‘see” and ‘don’t see.” A broad
base of knowledge which is a prerequisite for
mathematical insight (Hanna, 1983) could be
gained by explaining through visualisation as
process and product. In a proof that proves,
learners would not be able to come up with
explanations for the appearance of% or a% as in

Figure 3.

In a proof without words what could be gained
by the explanation itself? The explanation can
certainly help in terms of Bolzano’s “building a
foundation” (begriindung) (in Hanna, 1990). Any
explanation itself, however, will have to contend
with unintended exclusions and particularity
objections as shown earlier. In the first proof
without words in Figure 1,

(5 (2 +(5) -3

— |+ =]+ = +==

2 2 2 3

it is not possible to exercise visualisation as
process that goes to infinity. Furthermore, the last
three proofs without words (Figure 3) are about
general arithmetic theorems or series, namely, the
sum of consecutive positive integers starting with
1, the sum of consecutive triangular numbers
starting with 1 and the sum of consecutive cubes
starting with 1. As ‘informal proofs,” the proofs
without words discussed highlight the slippage
from dealing with specific numbers to dealing with
infinity and general arithmetic theorems.
Explanations must take this slippage into account.
Learners might want to know whether there is
another method to deal with the problems of
unintended exclusions and particularity objections.
Would this pave the way for proofs that prove?
What could done in the case of the learner who
cannot ‘see’ the deductive proof for

N+2n+3n+..+n°+...+3n+2n+n = n(n*)?
This deductive proof does not ‘explain’.

1+3+6+...+

If we are to align learners’ competence
descriptions with respect to proof then we must in
our teaching aim for a level of proof that explains.
The deductive mechanisms of mathematical
induction and deductive proof do not have the goal
of mathematical understanding (Hanna, 1983;
1990).

Concluding remarks

This paper has shown that visualisation as both
process and product can play an epistemic role in
changing selected proofs without words into proofs
that explain. It can be a means to help learners to
critically analyse and compare mathematical
arguments and proofs at the secondary level. What
has to be mentioned is the debate around the role
of visualisation itself in the learning of
mathematics. Sfard (1998) cites a prominent
member of the mathematics community who states
that visualisation is not mathematics. The
possibility of the “devaluation of visualisation”
(Presmeg, 1997) is therefore likely to permeate
right to the classroom, curriculum materials and
teacher education, according to Arcavi (2003).
Also, there are cognitive difficulties around
visualisation. In simplistic terms the issue raised
reads as follows: is ‘visual’ easier or more
difficult? We saw the cognitive demand was
certainly high in turning the combinatorial proof
without words of

2
P+2°+3+..+nt =[@j

into a proof that explains. In fact, it depends on a
previous proof without words. Learners would
need to attain flexible and competent translation
back and forth between visual and analytic
representations. Learners working on their
competences would thus have to be ready for long-
winded, non-linear and even tortuous processes
(Schoenfeld, Smith & Arcavi, 1993). Last but not
least, a difficulty arises from the fact that the
proofs without words in this paper were taken from
mathematics journals associated with tertiary or
higher education. In teaching proofs that explain
words via visualisation in secondary schools there
will be the inevitable “didactical transposition”
(Chevallard, 1985). There will be a transformation
of the knowledge associated with changing proofs
without words into proofs that explain. By its very
nature this process linearises, compartmentalises
and possibly also algorithmetises knowledge,
thereby stripping it of any rich interconnections
(Arcavi, 2003).
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proposed in words. First, we must understand thoroughly the condition. Second, we
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George Podlya
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