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Introduction 
From the mid 1970s onwards in almost every issue 
of the undergraduate mathematics journals 
Mathematics Magazine and College Mathematics 
Journal there is at least one ‘proof without words’ 
(Nelsen, 1993). A proof without words can be 
thought of as a ‘proof’ that makes use of visual 
representations, that is, pictures or other visual 
means to show a mathematical idea, equation or 
theorem (Casselman, 2000). It does not contain 
any words other than literal or numerical symbols 
and geometrical drawings, for example. There is 
debate around whether a proof without words 
really qualifies as a proof. It helps the observer see 
why a particular mathematical statement may be 
true, and also to see how one might begin to go 
about proving it true. It may also have an equation 
or two, arrows or shading in order to guide the 
reader in this process. In it there is a clear 
emphasis on providing visual clues to the reader in 
order to stimulate thinking with the eventual goal 
of writing a proof. Many proofs without words in 
the referred journals are directly related to the 
secondary Mathematics curriculum in South 
African schools although not exclusively so.  

Interpreting a proof without words requires 
explanations that draw on various mathematical 
ideas not necessarily evident in the proof without 
words. When the reader starts to unpack and 
explain the diagrams or pictures in the proof 
without words, it can become a ‘proof that 
explains’ as opposed to a ‘proof that proves.’ More 
needs to be said about the last two notions. Writing 
explanations for and discussing a suitable proof 
without words can present opportunities to develop 
insights about and connections between different 
mathematical ideas. These are also ways to 
popularise proof in general in the secondary 
mathematics curriculum (De Villiers, 1990; 
Volmink, 1990).  

References to proof appear in current South 
African policy documents on school mathematics 
reform at the secondary level. For example, 
“competence descriptions” for learners by the end 
of grade 12 include “being able to critically 

analyse and compare mathematical arguments and 
proofs” and being able to “demonstrate an 
understanding of proof in local axiomatic systems” 
(Department of Education, 2003: 83). The question 
becomes, what means are available to align 
learners and teachers with these competence 
descriptions?  Elsewhere the document mentions 
“mathematical process skills” which include  
generalising, explaining, describing, observing, 
inferring, specialising, justifying, representing, 
refuting and predicting (ibid.: 19). As possible 
visual processes these mathematical skills can 
stimulate thinking about proofs and also proofs 
without words. In this regard visualisation is a key 
construct which will be explored in this paper. A 
reference to proof also appears in the study of 
series and sequences (ibid.). 

The purpose of this paper is to explore an 
epistemic role for visualisation with respect to 
proofs without words in secondary mathematics in 
the current South African education policy context. 
Visualisation as process and product can be a 
means to examining proofs without words by 
turning them into proofs that explain. In this way 
students can develop insights and explanations for 
the mathematics they encounter in the secondary 
curriculum. The proofs without words chosen are 
those that show analytic and visual representations 
of series and sequences. In the secondary 
curriculum series and sequences are mainly 
represented analytically. It will be shown that a 
thoughtful interpretation and explanation through 
visualisation of such proofs without words 
connects different strands in the bureaucratically 
stated secondary curriculum found in the policy 
document (Department of Education, 2003). There 
is more mathematics embedded and ‘unseen’ in 
these proofs without words.  

 
Visualisation as process and product 
It is difficult to conceptualise a neat division 
between visualisation as process and product when 
we interpret a proof without words. Visualisation 
as product can be thought of as the proof without 
words or the final picture. On the other hand 

Pythagoras 65, June, 2007, pp. 53-62                   53 



M Faaiz Gierdien 
 
visualisation as process involves employing 
various techniques to understand and to interpret 
the proof without words. Visualisation has a 
special attraction in the case of a proof without 
words because the reader is drawn ‘to fill in the 
words’ in order to make the theorem or statement 
in the proof without words true. Literature on 
visualisation sometimes refers to visualising 
(Giaquinto, 1993; 1994), visual reasoning 
(Hershkowitz, Arcavi, & Bruckheimer, 2001) or 
simply visualisation (Arcavi, 2003). Many proofs 
without words rely on visual means to 
communicate a mathematical statement. 
Visualisation – as both the product and the process 
of creation, interpretation and reflection upon 
pictures and images – is gaining increased 
popularity in mathematics and mathematics 
education (Arcavi, 2003). What we do upon seeing 
a proof without words is process a product. 
Depending on the proof without words, the reader 
can be drawn into “seeing the unseen and perhaps 
also proving,” according to Arcavi (2003). One can 
think of interpreting, creating and reflecting as 
examples of visualisation as process, which can 
also include scribbling notes or diagrams on paper, 
or making gestures and utterances. Interestingly, 
visualisation as product can include explanatory 
notes that result from interpretation of and 
reflection on a proof without words, in addition to 
the final picture or proof without words.  

In a proof without words of the infinite 
geometric series 
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Arcavi (2003) argues that a proof without words is 
(a) neither “without words” nor (b) “a proof.” The 
reader is most likely to decode the picture through 
words (a) – either mentally or aloud – and 
according to Hilbert's standard for a proof, it must 
be “arithmetisable” (b), otherwise it is non-existent 
(Hadamard, 1954, in Arcavi, 2003). This explains 
the cautious use of “visual proof” in the case of the 
infinite geometric series. What is clear is the 
controversy around what constitutes a proof. From 
the former, we infer that what is seen – or 
visualisation as process or product – might actually 
be complemented by verbalisation. Hence the 
notion of “without words” in proof without words 
should not be understood literally.   

There is continuum between process and 
product interpretations of visualisation which is 
illustrated using the proof without words of the 
same infinite geometric series. The proof without 
words presented in Figure 1 is a product of the 

proof creator’s visualisation which the reader has 
to process. It provides us with cues that make our 
process of visualisation easier. We may not be 
instantly convinced of the result. Also, we 
potentially see how a proof for the geometric series 
is done. There are non-trivial bits of numerical 
manipulations that the reader has to process, for 
example, interpreting 
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The use of areas is an example of Arcavi’s 
(2003) notion of how the reader is attracted to 
“seeing the unseen” or “filling in the words.” To 
make the statement true we may be attracted to 
look at the final picture or product.  

Visualisation as process in the infinite 
geometric series has its attendant problems, 
namely, a particularity objection and unintended 
exclusions (Giaquinto, 1993). What is the 
particularity objection in visualisation as process in 
the case of this infinite geometric series? We 
cannot do a visualisation process of the geometric 
series that goes up to infinity. We can only do a 
visualisation process up to a particular number of 
areas. Visualisation as process thus cannot include 
every area in the infinite geometric series but it 
can specify some areas. Also, in the process of 
visualising the infinite geometric series there are 
some areas which will be excluded from the 
content of visualising. This is not to say that a 
precise number of areas is visualised. There will 
be numerical vagueness in the visualisation 
process, but not so much vagueness that no number 
of areas is excluded. For instance, we cannot 
visualise 41 specific areas, meaning that there will 
be “unintended exclusions” (ibid.). From the way 
Figure 1 is shown we are typically unable to carry 
out a visualisation process that includes exactly 41 

 

Figure 1. A proof without words of the 
infinite geometric series 
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areas. The best we can do is to visualise an 
arrangement of roughly 6 such areas. There will 
thus be a problem of unintended exclusions the 
more we specify the number of areas. This 
problem does not negate the use of visualisation as 
process in this infinite geometric series. It does, 
however, pull us in the direction of the final 
picture or visualisation as product so that we can 
hopefully conclude that the sum to infinity equals 
1
3 .  

Visualisation as process and product in the case 
of the infinite geometric series can take us in the 
direction of analysis. The unseen mathematics in 
Figure 1 is far more than meets the eye. Seeing the 
unseen mathematics depends on the reader’s 
insights. By visualising the first few steps in the 
process the reader gets an idea of the common 
nature of each step: we divide the large unmarked 
square into quarters, marks the lower left of these 
quarters and leaves the other three unmarked (to be 
divided into quarters in the next step). A crucial 
thought becomes apparent: at each stage there is a 
shading of one of the four squares. The reader has 
to come to believe the theorem that the limit of the 
series 
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Also, it is clear that at no particular stage of the 
division of the squares do the areas of the shaded 
parts of the figure add up to give 1

3 . It also seems 
clear that no area at the top right-hand corner is so 
small that it will not eventually “fill up” the open 
space. There will be unintended exclusions. One 
can think of 1

3  as the least upper bound of the 
sequence. The truth of the theorem can be inferred 
from this, taking it as known that a monotonic 
increasing function sequence bounded above 
converges to its least upper bound. The arguments 
presented here take us into the realm of elementary 
real analysis, involving the limit of an infinite 
process (Giaquinto, 1994). To get to see why the 
series has a limit of 1

3 , the reader’s eye has to 
digest several pieces of numerical information that 
are in the picture. This would entail seeing and 
eventually proving that the limit of the series is 1

3  
through real analysis. On the other hand the reader 
can simply see or trust that 1

3  of the area of the 
outer square is being shaded.  

According to Giaquinto (1994) there is insight 
garnered from the picture of such an infinite series. 

Looking at the picture or proof without words we 
understand why the series has the sums it does. 
This picture is not a proof of what the limit of the 
infinite series is. Implicit in the above are 
characteristic properties (Steiner, 1978, in Hanna, 
1990), which will be discussed, in more detail later 
on. This, however, brings us to an important 
distinction between proofs that demonstrate that a 
theorem or statement is true and proofs that show 
why a theorem or statement is true. Visualisation as 
both process and product plays a key role in 
turning a proof without words into a proof that 
explains. How do we distinguish a proof that 
proves from a proof that explains? 

 
Distinguishing between proofs that prove 
and proofs that explain  
One of Hanna’s (1983; 1990; 1998a; 1998b) major 
contributions to literature on the nature of proof in 
mathematics and mathematics education is a 
distinction between proofs that prove and proofs 
that explain. This distinction has a long and 
interesting history and is stated slightly differently 
at times. “Verifying” is used when proofs 
demonstrate that a theorem or statement is true and 
“clarifying” is used when proofs show why a 
theorem or statement is true (De Villiers, 1990). 
The former has to do with “convincing” or 
“making certain,” while the latter has to do with 
“explaining.” This distinction is quite important. 
For example, the mathematician Bolzano (in 
Hanna, 1990) makes a similar distinction “making 
certain” (gewissmachung) and “building a 
foundation” (begründung). “Making certain” and 
“building a foundation” are synonymous with a 
proof that proves or verifies and a proof that 
explains or clarifies, respectively. Hanna (1990) 
uses “explain” when a proof reveals, and makes 
use of the mathematical ideas that motivate it and 
hence refers to an “explanatory proof.” Such a 
proof focuses on “building a foundation” or 
clarifying, and is consonant with Volmink’s (1990) 
notion of proof as a means of communication. For 
example, in classrooms, teaching and explaining a 
proof becomes a form of discourse in which 
visualisation as process and product can lead to 
insight and connections among mathematical ideas. 
On the other hand, a proof that proves does not 
illuminate the appearance of particular symbols, 
whether literal or numerical, in a proof. 

Hanna (1998a) cites mathematical induction as 
the example of a proof that proves or verifies. We 
have to unpack mathematical induction by firstly 
examining induction and then mathematical 
induction. Induction is the process of discovering 
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general laws by the observation of and 
combination of particular instances. It aims at 
finding regularity and coherence behind 
observations. How do we insert a mathematical 
aspect to observations done via induction? 
According to Pólya (1945/1988) there is in 
mathematics a higher authority than observation 
and induction: rigorous proof. This is where 
mathematical induction comes in. It is to the 
mathematical aspects of mathematical induction 
that we turn to next. 

Pólya (1954) lists several steps in mathematical 
induction before its actual technique. These are the 
inductive phase, the demonstrative phase, 
examining transitions and, finally, the technique of 
mathematical induction. During the inductive 
phase we suspect that a particular mathematical 
relationship, theorem or statement is true. Driven 
by what we suspect, we formulate a conjecture 
about the mathematical statement which we test for 
particular cases to see if it is true. We check to see 
if the conjecture is true for several cases and we 
ask how we can test the conjecture more 
efficiently. During the demonstrative phase we 
examine whether the conjecture passes a severe 
test. This is done by taking what is supposedly true 
to what is incontestably true and finally 
consequently true.  

The statement   
22

...321
2 nnn +=++++   

which appears in secondary mathematics will be 
considered. During the inductive phase there is an 
examination of several numerical values, where we 
can tabulate the results for n = 1, 2, 3, …. For 
example, we would end up with a conjecture that  

22
...321

2 nnn +=++++  

is probably true.  
Proving this truth would involve 

testing whether the conjecture is 
true. In the demonstrative phase we 
increase our doubts by first, 
assuming that it is supposedly true. 
The conjecture is then shown to be 
incontestably true and then 
consequently true. Examining the 
transition from n to n + 1, is the last 
reasoning to conclude that 

22
...321

2 nnn +=++++  is true 

for all integers. To summarise, see 
Box 1. 

Going through this exercise we end up being 
certain that the statement is true. It is not difficult 
to see how all these steps are about convincing and 
making certain (gewissmachung).  

A curious student or learner following the steps 
in a proof via mathematical induction will certainly 
have questions, such as why is there a 1

2  in the 

statement, 
22

...321
2 nnn +=++++ ? 

This question calls for a ‘proof that explains.’ A 
visual representation or proof without words of this 
statement is shown in Figure 2.  

To answer the question about the 1
2  the student 

will have to use visualisation processes such as 
describing and observing a triangle and blocks or 
square units in order to interpret the proof 
constructor’s product or proof without words. 
Describing and observing can include ‘filling in 
the words’ or verbalising and ‘seeing the unseen.’ 
It becomes clear that processing a visualisation of 
the arithmetic (Giaquinto, 1993) in the statement is 
supported geometrically. Some of the seen and 
unseen mathematics is the area of a triangle with a 
height of length n units and a base of length n 

units. This area turns out to be 
2

2n .  

The missing area to be added is 1
2  multiplied by 

n, the number of n square units. These are the 
shaded half squares, 

2
n . It should be noted that the 

proof without words is about a general theorem in 
arithmetic: for all positive integers n, the sum of 
the first n positive integers is a half of n2 + n. The 
proof without words has a particular number of 
squares, meaning that in the visualisation processes 
there will be unintended exclusions. A similar 
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 Box 1. The transition from supposedly true to incontestably 
true, to consequently true, for all positive integers 
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point was raised in the case of the infinite 
geometric series. Alternately, we can find the area 
of a square of side length n, halving this area ( ) 

and then adding 

2n
1
2  of n blocks to yield 

22

2 nn
+ , to 

find 1 + 2 + 3 + …+ n. There is thus a geometrical 
justification in terms of the area of a triangle that 

explains the statement, 
22

...32
2 nnn +=++++1  

which includes an explanation for the appearance 
of  12 . 

There are contrasts between proofs that prove 
and proofs that explain in the case of the said 
mathematical statement. In the entire proof that 
proves via mathematical induction there is no 
translation back and forth between different 
representations. Only a numerical or analytic 
representation is used. In contrast, the proof that 
explains uses far more mathematics with the hope 
of bringing about understanding. Here there is the 
possibility that the student will develop insights 
depending on how his or her visualisation as 
process and product interacts and unfolds. The 
mathematical statement is about a general 
arithmetic theorem which is proved via 
mathematical induction, for all positive integers n. 
In contrast the proof that explains with its 
geometric justification makes use of the area of a 
particular triangle, although the height and base of 
the triangle is stated as general, namely, ‘n’. More 
needs to be said about proving and explaining with 
respect to proofs without words.  
 
Prove and explain 
So far it is evident that visualisation as process and 
product plays an important role in turning suitable 
proofs without words into explanatory proofs or 

proofs that explain. Central to this is seeking 
characterising properties in the proofs without 
words. Steiner (1978: 143) and Hanna (1990: 10) – 
who cites Steiner – characterise an explanatory 
proof as follows: 

 

 
 
 
 
n 

 
 n 

 

    Figure 2. Visual representation or proof 
without words 

…an explanatory proof makes reference to a 
characterising property on an entity or 
structure mentioned in the theorem, such that 
from the proof it is evident that the result 
depends on the property. It must be evident, 
that is, that if we substitute in the proof a 
different object of the same domain, the 
theorem collapses; more, we should be able to 
see as we vary the object, how the theorem 
changes in response. 

 
For example, what characteristic properties are 
entailed in proofs without words of the following 
two statements? 
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Also, how do we go about finding the 
characterising properties in proofs without words 
that motivate, explain and compel the truths of the 
statements? Much of the answer lies with Chinese 
mathematicians for whom a proof consisted of 
“any explanatory note, which served to convince or 
to enlighten” (Siu, 1993: 346). They practiced 
“proof as explanation” in ways that were very 
different from Greek mathematicians' axiomatics 
and deductive proofs, because these had not 
reached them (Hanna, 1998b). Explanatory notes 
as instances of visualisation as process and product 
thus play an important role in searching for 
characteristic properties.  

How can we explain each of the symbols in 
Figure 3, 

6
)2)(1()1(

6
1)1(

6
1 3 ++

=+−+
nnnnn , the 

mathematical statement for the sum of n triangular 
numbers?  

Visualisation as product in the form of a proof 
without words showing the sum of n triangular 
numbers is shown in Figure 3. The triangular 

numbers –  1, 3, 6, … , 
2

)1( +nn   –  are represented 

geometrically as the cubes in the layers t1, t2, t3…, 
tn respectively. The cubes forming the triangular 
numbers at each stage are arranged in a way where 
they form three-dimensional objects, which 
suggests that volume will come into play. In 
uncovering the characteristic properties of this 
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proof without words, the reader’s eye is guided by 
the visualisation in the arrangement of the 
triangular numbers as cubes and the equal signs 
ending with the generalised pyramid of height 
(n+1) units and base of area 1

2 (n + 1)2 square units. 
This forms a carefully assembled chain of 
reasoning and qualifies as a “good mathematical 
illustration” (Casselman, 2000) that entices the 
reader to visualise the processes that make the 
mathematical statement true. 

Where does 1
6  come from? In the third 

arrangement of the triangular number as cubes, in 
Figure 3, one sixth of the volume of the top small 
cube is shaded. A small cube on its own will 
consist of 3 small pyramids having the same 
height. This is what Calculus tells us, namely, the 
volume of a pyramid having the same height  

3
1

=V (area of base × height).  

The base, however, is halved, meaning that the 
volume of the shaded part of the cube becomes 

6
1

=V (area of base ×  height). 

This is indicated by the shaded part in the top, 
small cube, which forms the first triangular 
number. In the second triangular number two such 

slices are shaded. The pattern continues where 
three such slices are shaded for the third triangular 
number, and so on. 

In the second row of the arrangement in 
Figure 3, the shaded pyramids are turned upwards 
to a generalised pyramid of height (n + 1), with a 
halved base which is explained by the 1

6 . The full 
volume of a cubic arrangement of triangular 
numbers of side length (n+1) is therefore (n+1)3. 
In the case of summing the triangular numbers, we 
are only interested in 1

6  of the volume. The extra 

volumes of 16  of 1 cubic unit of which there will be 
(n+1) have to be subtracted. This illuminates the 

line  )1(
6
1)1(

6
1 3 +−+ nn . 

Obtaining the right-hand side of the statement 

6
)2)(1( ++ nnn  is a matter of factoring. As in the 

previous cases the proof without words contains 
unintended exclusions because it aims at drawing 
the reader into seeing a generalised arithmetic 
theorem.   Proofs without words for the statement  

2
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2
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⎛ +

=++++
nnn  

 
Figure 3. Proof without words: sum of triangular numbers (from Nelsen, 2005) 
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)

)

entail characteristic properties that are 
combinatorial and geometric in nature (see Figures 
4 and 5). 
 

Suggestion 1:  combinatorial proof without 
words 

The combinatorial proof takes its name from the 
combinations of the sum of positive integers 
starting with 1 (see Figure 4). By examining the 
combinatorial proof the reader can be encouraged 
into visualisation processes such as ‘seeing the 
unseen’ or ‘filling in the words.’ On the left hand 
side (Figure 4), there is the sum of the positive 
integers in the first row beginning with 1 up to n. 
In the second 
row, each of 
these integers is 
multiplied by 2. 
In the third row, 
each of the 
integers in the 
first row is 
multiplied by 3. 
This pattern continues. The last two rows on the 
left-hand side can be factorised and reduced to the 
following:  

(1 + 2 + 3 + … + n) × (  which becomes 

× . On the right hand side of 

Figure 4 the combinations of numbers as indicated 
are added in the following way:  

∑
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i
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i
i
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1 + (2 + 4 + 2) + (3 + 6 + 9 + 6 + 3) + 
… . nnnnnnn ++++++++ 23......32 2

Non-trivial bits of algebraic manipulation will 
have to be done to show that any L shape 
analytically represented as  

nnnnnnn ++++++++ 23......32 2   
sums to .  )( 2nn
Interestingly, these bits are not visualised at all. 
The L shapes sums are as follows: 

1 = 1(1) 
2 + 4 + 2 = 2(1 + 2 + 1)  
3 + 6 + 9 + 6 + 3 = 3(1 + 2 + 3 + 2 + 1).  

This generalises as set out in Box 2. 

 

Manipulating ⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

2
)1(

2
)1( nnnnn  yields 

)(

2

2
)1()1(   

2

22

nn

nnnnn

nnnnn

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −++
=

⎟
⎠
⎞

⎜
⎝
⎛ −++

 

 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

=

−+++++++++=++++++++

2
)1(

2
)1(

)1...321()...321(23......32 2

nnnnn

nnnnnnnnnnn
 

 
Box 2. Generalising for a combinatorial proof 
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Figure 4. Suggestion 1 – combinatorial proof (adapted from Pouryoussefi, 1989) 
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The previous manipulation is a deductive proof 
that shows that 

)(23......32 22 nnnnnnnnn =++++++++  
The combinatorial proof without words, in fact, 
uses a result from a previous proof without words 
about consecutive integers that was discussed 

earlier, namely: 
22

...321
2 nnn +=++++  

By focusing on these combinations of the 
numbers, we gain a sense of the truth of the 
original statement, namely: 

2
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Suggestion 2:  geometric proof without words 
In the geometric proof without words, a focus on 
the area of a square of side length compels the 
truth in the original statement with some 
qualification (see Figure 5). The reader’s attention 
can be directed to visualising the area of a square 
with a side length (1 + 2 + 3 + 4 + 5), or 

2
)15(5 + . 

This is a particular side length meaning that the 
particularity objection mentioned earlier may be 
applicable. The area of the square is 

2
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This means that there are unintended exclusions in 
the geometric proof without words. This does not 
mean that our visualising experience cannot be in 
the direction of a general arithmetical or 
mathematical statement as in this case. The area 
inferred in the geometric proof is not stated as an 

arithmetical theorem about all positive integers 
(Giaquinto, 1994) as compared to the 
combinatorial proof in suggestion 1. The problem 
of the unintended exclusions does not support a 
negative view of the utility of visualisation 
processes which are geometric in this instance. The 
connection between ‘series and sequences’ and the 
geometry of the areas of squares are not surprising 
because we have such a connection for summing 
the integers 1 + 2 + 3 + …+ n as we saw earlier on. 
 
Implications for teaching 
The ideas discussed in this paper have implications 
for what might happen in teaching. Each of the 
proofs without words became proofs that explain 
via visualisation as process and product. The latter 
is therefore a means to align policy statements 
about learners’ competence descriptions with 
respect to proof. Recall that learners have to be 
able to critically analyse and compare mathe-
matical arguments and proofs.  

So what might the teacher do? He or she should 
encourage learners to do the explaining when 
poring over a proof without words. They should be 
encouraged to ‘fill in the words’ and to try to ‘see 
the unseen’ mathematics through visualisation. 
They could do so collectively or individually. 
Applicable here are visualisation processes such as 
generalising, observing, inferring, representing, 
predicting, describing through writing down what 
is observed and verbalising collectively and 
individually. Note that that these processes are in 
concert with the Department of Education’s 
“mathematical process skills” according to the 

South African policy document for 
secondary mathematics (2003: 19). Learners 
could record their utterances or 
verbalisation on the sheet containing the 
proof without words. This would be the 
product of their visualisation in addition to 
the proof constructor’s proof without words 
which they will be interpreting and 
explaining. The teacher must explicitly tell 
learners that any proof without words is a 
proof constructor’s final product that they 
have to process. The teacher would have the 
challenging task of orchestrating a 
discussion that has the goal of linking 
learners’ visualisation process and product 
with the proof without words that they are 
examining. 

 

1 2 3 4 5 

2 4 6 8 10 

3 6 9 12 15 

4 8 12 16 20 

5 10 15 20 25 

Figure 5. Suggestion 2 – geometric proof 
(adapted from Pouryoussefi,1989) 

What is gained by learners explaining 
what they see in a proof without words? 
They might see how mathematical ideas in 
the secondary curriculum are related 
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through different representations. Who would have 
thought that a proof without words of a compact 
statement such as 

22
...321

2 nnn +=++++  

– on series and sequences – can be explained via 
the area of a triangle, or that an analytic 
representation such as  

6
)2)(1(

2
)1(...631 ++
=

+
++++

nnnnn  

can be explained using the volume of a pyramid? 
They could learn from the insights that fellow 
learners present during explaining. Here the 
teacher plays a critical role because he or she will 
have to figure out what learners are saying in 
relation to what they ‘see” and ‘don’t see.’ A broad 
base of knowledge which is a prerequisite for 
mathematical insight (Hanna, 1983) could be 
gained by explaining through visualisation as 
process and product. In a proof that proves, 
learners would not be able to come up with 
explanations for the appearance of 1

2  or a 1
6  as in 

Figure 3.  
In a proof without words what could be gained 

by the explanation itself? The explanation can 
certainly help in terms of Bolzano’s “building a 
foundation” (begründung) (in Hanna, 1990). Any 
explanation itself, however, will have to contend 
with unintended exclusions and particularity 
objections as shown earlier. In the first proof 
without words in Figure 1,  
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it is not possible to exercise visualisation as 
process that goes to infinity. Furthermore, the last 
three proofs without words (Figure 3) are about 
general arithmetic theorems or series, namely, the 
sum of consecutive positive integers starting with 
1, the sum of consecutive triangular numbers 
starting with 1 and the sum of consecutive cubes 
starting with 1. As ‘informal proofs,’ the proofs 
without words discussed highlight the slippage 
from dealing with specific numbers to dealing with 
infinity and general arithmetic theorems. 
Explanations must take this slippage into account. 
Learners might want to know whether there is 
another method to deal with the problems of 
unintended exclusions and particularity objections. 
Would this pave the way for proofs that prove? 
What could done in the case of the learner who 
cannot ‘see’ the deductive proof for 

nnnnnnn ++++++++ 23......32 2  = ? )( 2nn
This deductive proof does not ‘explain’. 

If we are to align learners’ competence 
descriptions with respect to proof then we must in 
our teaching aim for a level of proof that explains. 
The deductive mechanisms of mathematical 
induction and deductive proof do not have the goal 
of mathematical understanding (Hanna, 1983; 
1990).  

 
Concluding remarks 
This paper has shown that visualisation as both 
process and product can play an epistemic role in 
changing selected proofs without words into proofs 
that explain. It can be a means to help learners to 
critically analyse and compare mathematical 
arguments and proofs at the secondary level. What 
has to be mentioned is the debate around the role 
of visualisation itself in the learning of 
mathematics. Sfard (1998) cites a prominent 
member of the mathematics community who states 
that visualisation is not mathematics. The 
possibility of the “devaluation of visualisation” 
(Presmeg, 1997) is therefore likely to permeate 
right to the classroom, curriculum materials and 
teacher education, according to Arcavi (2003). 
Also, there are cognitive difficulties around 
visualisation. In simplistic terms the issue raised 
reads as follows: is ‘visual’ easier or more 
difficult? We saw the cognitive demand was 
certainly high in turning the combinatorial proof 
without words of 

2
3333
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⎜
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=++++
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into a proof that explains. In fact, it depends on a 
previous proof without words. Learners would 
need to attain flexible and competent translation 
back and forth between visual and analytic 
representations. Learners working on their 
competences would thus have to be ready for long-
winded, non-linear and even tortuous processes 
(Schoenfeld, Smith & Arcavi, 1993). Last but not 
least, a difficulty arises from the fact that the 
proofs without words in this paper were taken from 
mathematics journals associated with tertiary or 
higher education. In teaching proofs that explain 
words via visualisation in secondary schools there 
will be the inevitable “didactical transposition” 
(Chevallard, 1985). There will be a transformation 
of the knowledge associated with changing proofs 
without words into proofs that explain. By its very 
nature this process linearises, compartmentalises 
and possibly also algorithmetises knowledge, 
thereby stripping it of any rich interconnections 
(Arcavi, 2003).  
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“In order to translate a sentence from English into French two things are necessary. 
First, we must understand thoroughly the English sentence. Second, we must be 

familiar with the forms of expression peculiar to the French language. The situation is 
very similar when we attempt to express in mathematical symbols a condition 

proposed in words. First, we must understand thoroughly the condition. Second, we 
must be familiar with the forms of mathematical expression.” 

 
George Pólya 


