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INTRODUCTION 

In the previous issue of Learning and Teaching Mathematics, it was shown in De Villiers (2020) how a formula 
for the area of a quadrilateral in terms of its diagonals and the sine of the angle between them can easily be 
extended to  

While the idea of negative quantities is familiar, and taken for granted in arithmetic, algebra, trigonometry, 
and even in physics, the mere mention of concepts in geometry lik
generates incredulous looks among people who hear of it for the first time. Of course, the ancient Greeks 
never considered the possibility of negative quantities in geometry, but at least since about the 19th century, 

providing one general proof, rather than having to consider and prove several different cases. 

The purpose of this article is to give two further examples of the value of directed or signed quantities in 
geometry, focusing this time on directed angles and directed distances. 

FIRST EXAMPLE: DIRECTED ANGLES 

The first example is a well-known theorem prescribed in most school mathematics curricula around the 
world, including the South African High School Mathematics Curriculum, where it is usually dealt with in 
Grade 11/12. 

Theorem: The angle subtended by an arc (or chord) at the centre of a circle is twice the size of the angle 
subtended by the same arc (or chord) at the circumference of the circle (on the same side of the chord as 
the centre). 

Proof: For a complete proof of the result, one has to consider three different geometric configurations as 
shown in Figure 1. 

 

FIGURE 1:  Three different cases fo  
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When proving the result, teachers and textbooks sometimes only consider the first case in Figure 1, but this 
is not sufficient. The proof of the third case is identical to the first case, although students often have 
difficulty in visualizing and correctly applying the theorem when the central angle becomes reflexive. 
However, the proof of the second case is quite different from the other two. 
The proofs for the first and third cases in Figure 1 are the same. For example, draw AO and extend to X as 
indicated. Then: 
    

    

    

    

             Thus,  

However, the second case is different, and involves the subtraction of angles. Although the first part of the 
proof is identical, the difference is apparent in the last step: 

    

    

    

    

        Thus,  

does not need to write down the second proof, 
and the first proof suffices for all three cases, provided one clearly states at the beginning that one is making 
use of directed angles.  

The idea is really quite simple. Note that in the first and third cases the size of is determined by an 
anti-clockwise rotation of ray OB around O to map onto ray OX (which in trigonometry is normally defined 
as a positive rotation). However, in the second case the size of is determined by a clockwise rotation 
of ray OB around O to map onto ray OX (which in trigonometry is normally defined as a negative rotation). 
In other words, in the second case, can be viewed as negative in relation to in the other two 
cases. Most significantly, the first proof therefore holds provided we regard as negative in the second 
case, as the first proof then automatically covers the necessary subtraction in the second case. 

One of the advantages therefore of using directed angles is that it avoids having to write down several 
different proofs in order to cover different cases. It is important, however, that one clearly states at the 
outset of such a proof that one is assuming directed angles. 

Most dynamic geometry packages allow for the measurement of directed angles. Although the default setting 
of angle measurement in Sketchpad is for the absolute value of an angle, this can easily be changed in the 

GeoGebra 
s default measurement. For example, when a quadrilateral ABCD is changed into a crossed 

quadrilateral (as shown in Figure 2) by dragging vertex C across AD, two reflex angles are formed at the 
vertices C and D, and the angle sum of the angles of the crossed quadrilateral becomes 720°. 
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FIGURE 2:  The angles of a crossed quadrilateral in GeoGebra 

-
about crossed quadrilaterals by learners could create an excellent opportunity for not only learning about 
directed angles, but also about explaining why (proving that) the angle sum is 720° (De Villiers, 2003, pp. 
40-44; 156-157). 

SECOND EXAMPLE: DIRECTED DISTANCES 

Consider the following problem from De Villiers (2003, pp. 26, 149-150), which is easily accessible for 
learners in Grades 8-9: Prove that the sum of the distances4 from a point to the sides of a parallelogram is 
constant. A dynamic geometry sketch is available online for the reader or learners to explore: 
 

http://dynamicmathematicslearning.com/parallelogram-distances.html  

 
 

FIGURE 3:  Distances to the sides of a parallelogram. 

 

 

                                                 
4 P to the sides. 
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Proof: Consider Figure 3 showing parallelogram ABCD with an arbitrary point P, and the distances from P
to the sides. Although in the accurately drawn diagram in Figure 3 it is clear that FPG and HPI are straight 
lines, we may not assume they are straight  we need to prove5 it. Draw line XPY parallel to the opposite 
sides AB and CD. Then it follows that: 

   (co-interior )  

   (alternate ) 

  

Hence, FPG is a straight line. In the same way, it can be shown that HPI is also straight. Now note that: 

  AB and CD is constant 

  AD and BC is constant 

   

This completes the proof.  

What happens when point P is dragged outside the parallelogram ABCD? The reader is requested to explore 
this now in the dynamic sketch at the URL provided earlier. 

While the sum of the distances remains constant as long as P is inside ABCD, the reader will find as soon 
as P is moved outside ABCD, as shown in Figure 4, that this sum is no longer constant. So is the theorem 
only valid while P is inside the parallelogram? 

 
 

FIGURE 4:  Moving point P outside the parallelogram 

If we use directed distances (or vectors) it is easy to see that the result actually still holds when P is moved outside 
ABCD, because it results in a change of direction for some of the distances. Consider Figure 5, which shows 

vectors and with the resultant of . Note that in the second case, when P is moved 

outside the parallelogram, has changed direction and the magnitude of now needs to be subtracted 

from the magnitude of . Hence, the resultant remains unchanged6.  

                                                 
5 Pedagogically, when proving it in class, it is probably advisable rather to make use of an inaccurately drawn sketch 
so that these lines do NOT appear straight. 
6 Sometimes instead of vectors, the convenient definition is used that all distances falling completely outside a figure 
are regarded as negative. For example, note that PG changes direction as soon as P is moved outside the parallel lines, 
and can therefore be considered as negative. 
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Since the same argument applies for the sum of the directed distances (vectors) and , the total sum 
of the directed distances (vectors) from P to the sides remains constant, even when P is moved outside 
ABCD. 

 
FIGURE 5:  Using directed distances/vectors 

As we have seen in this example, the value of using directed distances (or vectors) in geometry is that many 
tes that the 

sum of the distances from a point to the sides of an equilateral triangle is constant (see Samson, 2012), can 
similarly be generalized by using directed distances so that it is also valid when the point is moved outside 
the triangle. This also -angled and equilateral polygons, 

(De Villiers, 2013). 

Finally, since this result for a p
lines, it is easy to see that it generalizes to any 2n-gon with opposite sides parallel. It therefore provides 
another good example of the so- of mentioned in De Villiers (1990), where 
an explanatory proof leads to further generalization. 

CONCLUDING REMARKS 

This paper has given two examples of the value of using directed areas and distances. In the first case with 
directed angles, it was useful b
three different configurations. In the case with directed distances, it was useful to extend the result to points 
outside the parallelogram. Learning about directed quantities in geometry might be particularly useful for 
learners who wish to participate in high-level mathematics competitions (like PAMO, SAMO and IMO). It 
would also be a suitable topic to address in a Mathematics Club for talented learners at a school.  

REFERENCES 

De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras 24, 17-24. 
De Villiers, M. (2003). Rethinking Proof with Sketchpad. Emeryville: Key Curriculum Press. 
De Villiers, M. (2012). An example of the explanatory and discovery function of proof. Pythagoras, 33(3), Art. 

#193, http://dx.doi.org/10.4102/pythagoras.v33i3.193  
The Mathematical Gazette, 97(540), pp. 441-

445. 
De Villiers, M. (2020). The area of concave and crossed quadrilaterals in terms of their diagonals. Learning 

and Teaching Mathematics, 28, pp. 19-21. 
 a geometrical diversion. Learning and Teaching Mathematics, 13, pp. 

28-32. 


