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INTRODUCTION

In the previous issue of Learning and Teaching Mathematics, it was shown in De Villiers (2020) how a formula
for the area of a quadrilateral in terms of its diagonals and the sine of the angle between them can easily be
extended to concave or crossed quadrilaterals with the use of ‘signed’ or ‘directed’ areas.

While the idea of negative quantities is familiar, and taken for granted in arithmetic, algebra, trigonometry,
and even in physics, the mere mention of concepts in geometry like ‘negative’ areas, distances or angles often
generates incredulous looks among people who hear of it for the first time. Of course, the ancient Greeks
never considered the possibility of negative quantities in geometry, but at least since about the 19™ century,
geometers have gradually grown accustomed to this ‘revolutionary’ idea, mainly because of its value in

providing one general proof, rather than having to consider and prove several different cases.

The purpose of this article is to give two further examples of the value of directed or signed quantities in
geometry, focusing this time on directed angles and directed distances.

FIRST EXAMPLE: DIRECTED ANGLES

The first example is a well-known theorem prescribed in most school mathematics curricula around the
world, including the South African High School Mathematics Curriculum, where it is usually dealt with in
Grade 11/12.

Theorem: The angle subtended by an arc (or chord) at the centre of a circle is twice the size of the angle
subtended by the same arc (or chord) at the circumference of the circle (on the same side of the chord as
the centre).

Proof: For a complete proof of the result, one has to consider three different geometric configurations as
shown in Figure 1.
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FIGURE 1: Three different cases for the ‘Angle at Centre’ theorem
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When proving the result, teachers and textbooks sometimes only consider the first case in Figure 1, but this
is not sufficient. The proof of the third case is identical to the first case, although students often have
difficulty in visualizing and correctly applying the theorem when the central angle becomes reflexive.

However, the proof of the second case is quite different from the other two.

The proofs for the first and third cases in Figure 1 are the same. For example, draw .40 and extend to X as
indicated. Then:

20BA = x = £OAB ... OB = 04; radii
= £B0OX = 2x ...exterior angle of AABO
2£0CA =y = £0OAC ...0C = 04; radii
= £X0C = 2y ...exterior angle of AAOC
Thus, £BOC = £BOX + £X0C = 2x+ 2y = 2(x +y) = 2£BAC

However, the second case is different, and involves the subtraction of angles. Although the first part of the
proof is identical, the difference is apparent in the last step:

L0OBA = x = £0OAB ...OB = 04; radii

= £BOX = 2x ... exterior angle of AABO

£0CA =y = £0OAC ...0C = 04; radii

= £X0C = 2y ...exterior angle of AAOC

Thus, £BOC = £X0C — £B0OX = 2y —2x = 2(y —x) = 2¢4BAC

Using the 1dea of ‘directed’ (or ‘signed’) angles, however, one does not need to write down the second proof,
and the first proof suffices for all three cases, provided one clearly states at the beginning that one is making

use of directed angles.

The idea is really quite simple. Note that in the first and third cases the size of ZBOX is determined by an
anti-clockwise rotation of ray OB around O to map onto ray OX (which in trigonometry is normally defined
as a positive rotation). However, in the second case the size of ZBOX is determined by a clockwise rotation
of ray OB around O to map onto ray OX (which in trigonometry is normally defined as a negative rotation).
In other words, in the second case, ZBOX can be viewed as negative in relation to £B0OX in the other two
cases. Most significantly, the first proof therefore holds provided we regard ZBOX as negative in the second
case, as the first proof then automatically covers the necessary subtraction in the second case.

One of the advantages therefore of using directed angles is that it avoids having to write down several
different proofs in order to cover different cases. It is important, however, that one clearly states at the
outset of such a proof that one is assuming directed angles.

Most dynamic geometry packages allow for the measurement of directed angles. Although the default setting
of angle measurement in Skezchpad is for the absolute value of an angle, this can easily be changed in the
Edit/Preferences/Units/Angle menu to ‘directed degrees’. The popular GeoGebra actually has ‘directed
degrees’ as its default measurement. For example, when a quadrilateral ABCD is changed into a crossed
quadrilateral (as shown in Figure 2) by dragging vertex C across 4D, two reflex angles are formed at the
vertices C and D, and the angle sum of the angles of the crossed quadrilateral becomes 720°.
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FIGURE 2: The angles of a crossed quadrilateral in GeoGebra

Instead of the usual practice of ‘monster-barring’ crossed quadrilaterals, such a surprising empirical discovery
about crossed quadrilaterals by learners could create an excellent opportunity for not only learning about
directed angles, but also about explaining why (proving that) the angle sum is 720° (De Villiers, 2003, pp.
40-44; 156-157).

SECOND EXAMPLE: DIRECTED DISTANCES

Consider the following problem from De Villiers (2003, pp. 26, 149-150), which is easily accessible for
learners in Grades 8-9: Prove that the sum of the distances* from a point to the sides of a parallelogram is

constant. A dynamic geometry sketch is available online for the reader or learners to explore:

http://dynamicmathematicslearning.com/parallelogram-distances.html

n ! F !

FIGURE 3: Distances to the sides of a parallelogram.

4 With ‘distances” here is meant ‘shortest distances’, which are the perpendiculars from P to the sides.
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Proof: Consider Figure 3 showing parallelogram .4BCD with an arbitrary point P, and the distances from P
to the sides. Although in the accurately drawn diagram in Figure 3 it is clear that FPG and HPI are straight
lines, we may not assume they ate straight — we need to prove’ it. Draw line XPY parallel to the opposite
sides AB and CD. Then it follows that:

£XPF = 90° = £DFP (co-interior £S)
£XPG = 90° = £BGP (alternate £S)
= £XPF + £XPG =90° 4+ 90° = 180°
Hence, FPG is a straight line. In the same way, it can be shown that HPI is also straight. Now note that:
hy + hz = constant = ¢, ... distance between parallels 4B and CD is constant
h; + hy = constant = ¢, ... distance between parallels 4D and BC is constant
= hy + hy + hz + hy = ¢4 + ¢, = constant.
This completes the proof.

What happens when point Pis dragged outside the parallelogram .4BCD? The reader is requested to explore
this now in the dynamic sketch at the URL provided earlier.

While the sum of the distances remains constant as long as P is inside ABCD, the reader will find as soon
as P is moved outside ABCD, as shown in Figure 4, that this sum is no longer constant. So is the theorem

only valid while P is inside the parallelogram?
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FIGURE 4: Moving point P outside the parallelogram

If we use directed distances (ot vectors) it is easy to see that the result actually still holds when P is moved outside
ABCD, because it results in a change of direction for some of the distances. Consider Figure 5, which shows

vectors GP and PF with the resultant of GP + PF = GF. Note that in the second case, when P is moved
outside the parallelogram, GP has changed direction and the magnitude of GP now needs to be subtracted

from the magnitude of PF. Hence, the resultant GF remains unchanged’.

> Pedagogically, when proving it in class, it is probably advisable rather to make use of an inaccurately drawn sketch
so that these lines do NOT appear straight.

¢ Sometimes instead of vectors, the convenient definition is used that all distances falling completely outside a figure
are regarded as negative. For example, note that PG changes direction as soon as P is moved outside the parallel lines,
and can therefore be considered as negative.
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Since the same argument applies for the sum of the directed distances (vectors) IP and PH, the total sum

of the directed distances (vectors) from P to the sides remains constant, even when P is moved outside
ABCD.

FIGURE 5: Using directed distances/vectors

As we have seen in this example, the value of using directed distances (or vectors) in geometry is that many
results can be extended so that they hold more generally. Viviant’s theorem, for example, that states that the
sum of the distances from a point to the sides of an equilateral triangle is constant (see Samson, 2012), can
similarly be generalized by using directed distances so that it is also valid when the point is moved outside
the triangle. This also applies to generalizations of Viviant’s theorem to equi-angled and equilateral polygons,
to Clough’s variation of Viviani’s theorem (De Villiers, 2012), as well as to generalizations of Viviani to 3D
(De Villiers, 2013).

Finally, since this result for a parallelogram follows from the ‘constant distance’ property of pairs of parallel
lines, it is easy to see that it generalizes to any 2z-gon with opposite sides parallel. It therefore provides
another good example of the so-called ‘discovery’ function of proof mentioned in De Villiers (1990), where
an explanatory proof leads to further generalization.

CONCLUDING REMARKS

This paper has given two examples of the value of using directed areas and distances. In the first case with
directed angles, it was useful because writing down a ‘directed angles’ proof would automatically cover the
three different configurations. In the case with directed distances, it was useful to extend the result to points
outside the parallelogram. Learning about directed quantities in geometry might be particularly useful for
learners who wish to participate in high-level mathematics competitions (like PAMO, SAMO and IMO). It
would also be a suitable topic to address in a Mathematics Club for talented learners at a school.
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